MUTUAL PRIMALITY AND THE ELEMENTARY SYMMETRIC
FuNcTIONS

1 Introduction

Let’s prove a simple theorem about mutual primality and the elementary symmetric functions.
Let x1 up to x, be n variables, and let o; up to o, be the n elementary symmetric functions on
these variables, order irrelevant. We wish to show that whenever z; up to z, are mutually prime
(not necessarily pairwise), then so are oy up to o, (the converse is trivial). To simplify notational
matters, we will only consider the case n = 3, but the general case is virtually identical.

Suppose z, y and z are mutually prime. We will show that so are x +y + 2z, xy + zz + yz and
xyz. Suppose a prime p divides both zyz and xy + xz+yz. We will show it cannot divide z +y+ z.
Since p | zyz, p divides one of the factors, say p | x. Since p | xy + 22 + yz = x(y + 2) + yz, we see
that p | yz. Again p must divide one of the factors, say p | y. However, from mutual primality, p 1 z
and so ptz+y+ 2.

Now let’s see another proof for the case n = 2. Recall that (x, y) = 1 if and only if ax + by = 1
for some integers a and b. We start with a linear combination ax + by = 1 and produce a linear
combination of z 4+ y and zy equaling unity:

1 = (azx + by)?
= a’2® + b*y* + 2abxy
= a*(2® + zy) + > (y* + 2y) + (2ab — a® — b*)xy
= (a’z +b%y)(z +y) — (a —b)’xy.

Now we ask whether this can be done for more than two variables. That is, we ask whether there is
in the ideal of Z[x1, xo, ..., T, a1, a9, ..., a,] generated by the n symmetric functions on the first
n variables a function of the form P()_ a;x;), where P(+) is a polynomial in one variable satisfying
P(1) = 1'. In the next section we show that it is indeed the case.

2 Proof

First, we prove a Lemma: if the numbers x; up to z,, are relatively prime, then so are z¢ up to x¢

for any integer d > 1. We shall provide an explicit formula showing this. The proof is by induction.
When d = 1 there is nothing to prove. Now suppose the claim is true for all d—1, and we’ll prove it
for d. We are given integers a; such that > a;z; = 1, and other integers b; such that > bixf_l =1.
In order to find a linear combination in the x%s totalling one, we shall look at powers of > a;z;.
Each such power, when expanded, is a sum of monomials. We shall call a monomial representable
if it is a linear combination in the x%s. If all the monomials are representable, so is the power, and
we are done.

When is a monomial representable? If it is divisible by x¢ for some i then it is certainly
representable. Next suppose the monomial is Hajf", where d; > 1 for all . When multiplied by
any 297! it becomes a multiple of z¢, hence representable. Thus ([Tz%)(> biz?™!) = [Jz% is
representable. Summarizing, a monomial is representable if either one of its powers is at least d, or
none is zero. If we raise > a;z; to a high enough power, we can guarantee that it happens: indeed,
when raising to the ((d —1)(n —1) + 1)th power, each monomial has total degree (d —1)(n—1)+ 1.
If the degrees are split among less than n variables, at least one will have degree at least d.

'Tn other words, we seek a formula of the form > P,o;, where every P; is a polynomial in the z;s and the a;s with
integral coefficients, that equals one as long as > a;z; = 1.



Second, we use the Lemma to prove our Theorem. By the lemma, there are polynomial expres-
sions a; up to a, that satisfy > a;z = 1. We will build an expression based on the elementary
symmetric function equaling >~ a;z?. Our first summand is (Y a;z? ") (3 ;). This gives us 3 a;a7}
together with leftovers a;x7 ' x;. To get rid of these leftovers, we subtract (3" a;z?) (3. @;2;). This
gives us new leftovers of the form aia:?_ngxk. Continuing this way, the penultimate step will create
the leftovers a; [[ ;. These can be eliminated by adding or subtracting ) a; [[ «;, completing the
proof.

Let’s see how all of this works in the first two cases. When n = 2, we need to show first that
if x and y are mutually prime, then so are their squares. We are told to raise ax + by = 1 to the
(1-1+ 1)th power, giving 1 = (az + by)? = a*z* + b*y? + 2abry. The first two terms are evidently
representable. The third term is representable since 2abzy = 2abzy(ax+by) = 2aby -+ 2ab’z - 2.
Putting it all together,

1 = (az + by)* = a®(1 + 2by)2® + b*(1 + 2ax)y>.
So we have ¢ and d that satisfy cz? + dy? = 1. The final step is
1 =cz® + dy* = (cx + dy)(z + y) — (c + d)zy.

Next we move to n = 3. First we show that if z, y and z are mutually prime, then so are their
squares. This time we are told to raise ax + by + ¢z to the (2-1+ 1)th power, giving us monomials
of the forms 23, 2%y and xyz. The first two are easy to represent, and the third can be represented
as zyz(ax + by + cz) = ayz - 2> + bxz - y? + cxy - 22

The next step is to show that if z, y and z are mutually prime, then so are their cubes. Now
we are obliged to raise ax + by + ¢z to the fifth power. The resulting monomials are of the forms
2°, aty, 23y?, 23y~ and 2%yz. The first four are trivial to represent. To represent zyz, we use the
fact that some A, B and C satisfy Az? + By? + Cz? = 1. Then 2%yz = 2?yz(Az? + By* + C2?) =
Axzyz - 23 + Bz -y + Ca?y - 25

Now we are ready to the final step. Armed with o, 3 and 7 that satisfy ax® + By® + 723, we
note that

1= a2’ +By° +72° = (ax® + By* +722) (x +y+2) — (ax + By +72) (zy + 22 +y2) + (a+ B+7)wyz2.



