
Mutual Primality and the Elementary Symmetric

Functions

1 Introduction

Let’s prove a simple theorem about mutual primality and the elementary symmetric functions.
Let x1 up to xn be n variables, and let σ1 up to σn be the n elementary symmetric functions on
these variables, order irrelevant. We wish to show that whenever x1 up to xn are mutually prime
(not necessarily pairwise), then so are σ1 up to σn (the converse is trivial). To simplify notational
matters, we will only consider the case n = 3, but the general case is virtually identical.

Suppose x, y and z are mutually prime. We will show that so are x + y + z, xy + xz + yz and
xyz. Suppose a prime p divides both xyz and xy +xz +yz. We will show it cannot divide x+y +z.
Since p | xyz, p divides one of the factors, say p | x. Since p | xy + xz + yz = x(y + z) + yz, we see
that p | yz. Again p must divide one of the factors, say p | y. However, from mutual primality, p - z
and so p - x + y + z.

Now let’s see another proof for the case n = 2. Recall that (x, y) = 1 if and only if ax + by = 1
for some integers a and b. We start with a linear combination ax + by = 1 and produce a linear
combination of x + y and xy equaling unity:

1 = (ax + by)2

= a2x2 + b2y2 + 2abxy

= a2(x2 + xy) + b2(y2 + xy) + (2ab− a2 − b2)xy

= (a2x + b2y)(x + y)− (a− b)2xy.

Now we ask whether this can be done for more than two variables. That is, we ask whether there is
in the ideal of Z[x1, x2, . . . , xn, a1, a2, . . . , an] generated by the n symmetric functions on the first
n variables a function of the form P (

∑
aixi), where P (·) is a polynomial in one variable satisfying

P (1) = 11. In the next section we show that it is indeed the case.

2 Proof

First, we prove a Lemma: if the numbers x1 up to xn are relatively prime, then so are xd
1 up to xd

n

for any integer d ≥ 1. We shall provide an explicit formula showing this. The proof is by induction.
When d = 1 there is nothing to prove. Now suppose the claim is true for all d−1, and we’ll prove it
for d. We are given integers ai such that

∑
aixi = 1, and other integers bi such that

∑
bix

d−1
i = 1.

In order to find a linear combination in the xd
i s totalling one, we shall look at powers of

∑
aixi.

Each such power, when expanded, is a sum of monomials. We shall call a monomial representable
if it is a linear combination in the xd

i s. If all the monomials are representable, so is the power, and
we are done.

When is a monomial representable? If it is divisible by xd
i for some i then it is certainly

representable. Next suppose the monomial is
∏

xdi
i , where di ≥ 1 for all i. When multiplied by

any xd−1
i , it becomes a multiple of xd

i , hence representable. Thus (
∏

xdi
i )(

∑
bix

d−1
i ) =

∏
xdi

i is
representable. Summarizing, a monomial is representable if either one of its powers is at least d, or
none is zero. If we raise

∑
aixi to a high enough power, we can guarantee that it happens: indeed,

when raising to the ((d− 1)(n− 1)+1)th power, each monomial has total degree (d− 1)(n− 1)+1.
If the degrees are split among less than n variables, at least one will have degree at least d.

1In other words, we seek a formula of the form
∑

Piσi, where every Pi is a polynomial in the xis and the ais with
integral coefficients, that equals one as long as

∑
aixi = 1.
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Second, we use the Lemma to prove our Theorem. By the lemma, there are polynomial expres-
sions a1 up to an that satisfy

∑
aix

n
i = 1. We will build an expression based on the elementary

symmetric function equaling
∑

aix
n
i . Our first summand is (

∑
aix

n−1
i ) (

∑
xi). This gives us

∑
aix

n
i

together with leftovers aix
n−1
i xj. To get rid of these leftovers, we subtract (

∑
aix

n−2
i ) (

∑
xixj). This

gives us new leftovers of the form aix
n−2
i xjxk. Continuing this way, the penultimate step will create

the leftovers ai

∏
xj. These can be eliminated by adding or subtracting

∑
ai

∏
xi, completing the

proof.
Let’s see how all of this works in the first two cases. When n = 2, we need to show first that

if x and y are mutually prime, then so are their squares. We are told to raise ax + by = 1 to the
(1 · 1 + 1)th power, giving 1 = (ax + by)2 = a2x2 + b2y2 + 2abxy. The first two terms are evidently
representable. The third term is representable since 2abxy = 2abxy(ax+by) = 2a2by ·x2+2ab2x ·y2.
Putting it all together,

1 = (ax + by)2 = a2(1 + 2by)x2 + b2(1 + 2ax)y2.

So we have c and d that satisfy cx2 + dy2 = 1. The final step is

1 = cx2 + dy2 = (cx + dy)(x + y)− (c + d)xy.

Next we move to n = 3. First we show that if x, y and z are mutually prime, then so are their
squares. This time we are told to raise ax + by + cz to the (2 · 1 + 1)th power, giving us monomials
of the forms x3, x2y and xyz. The first two are easy to represent, and the third can be represented
as xyz(ax + by + cz) = ayz · x2 + bxz · y2 + cxy · z2.

The next step is to show that if x, y and z are mutually prime, then so are their cubes. Now
we are obliged to raise ax + by + cz to the fifth power. The resulting monomials are of the forms
x5, x4y, x3y2, x3yz and x2yz. The first four are trivial to represent. To represent x2yz, we use the
fact that some A, B and C satisfy Ax2 + By2 + Cz2 = 1. Then x2yz = x2yz(Ax2 + By2 + Cz2) =
Axyz · x3 + Bx2z · y3 + Cx2y · z3.

Now we are ready to the final step. Armed with α, β and γ that satisfy αx3 + βy3 + γz3, we
note that

1 = αx3 +βy3 +γz3 = (αx2 +βy2 +γz2)(x+y +z)− (αx+βy +γz)(xy +xz +yz)+(α+β +γ)xyz.
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