Mutual Primality and the Elementary Symmetric Functions

1 Introduction

Let's prove a simple theorem about mutual primality and the elementary symmetric functions. Let x_{1} up to x_{n} be n variables, and let σ_{1} up to σ_{n} be the n elementary symmetric functions on these variables, order irrelevant. We wish to show that whenever x_{1} up to x_{n} are mutually prime (not necessarily pairwise), then so are σ_{1} up to σ_{n} (the converse is trivial). To simplify notational matters, we will only consider the case $n=3$, but the general case is virtually identical.

Suppose x, y and z are mutually prime. We will show that so are $x+y+z, x y+x z+y z$ and $x y z$. Suppose a prime p divides both $x y z$ and $x y+x z+y z$. We will show it cannot divide $x+y+z$. Since $p \mid x y z, p$ divides one of the factors, say $p \mid x$. Since $p \mid x y+x z+y z=x(y+z)+y z$, we see that $p \mid y z$. Again p must divide one of the factors, say $p \mid y$. However, from mutual primality, $p \nmid z$ and so $p \nmid x+y+z$.

Now let's see another proof for the case $n=2$. Recall that $(x, y)=1$ if and only if $a x+b y=1$ for some integers a and b. We start with a linear combination $a x+b y=1$ and produce a linear combination of $x+y$ and $x y$ equaling unity:

$$
\begin{aligned}
1 & =(a x+b y)^{2} \\
& =a^{2} x^{2}+b^{2} y^{2}+2 a b x y \\
& =a^{2}\left(x^{2}+x y\right)+b^{2}\left(y^{2}+x y\right)+\left(2 a b-a^{2}-b^{2}\right) x y \\
& =\left(a^{2} x+b^{2} y\right)(x+y)-(a-b)^{2} x y .
\end{aligned}
$$

Now we ask whether this can be done for more than two variables. That is, we ask whether there is in the ideal of $\mathbb{Z}\left[x_{1}, x_{2}, \ldots, x_{n}, a_{1}, a_{2}, \ldots, a_{n}\right]$ generated by the n symmetric functions on the first n variables a function of the form $P\left(\sum a_{i} x_{i}\right)$, where $P(\cdot)$ is a polynomial in one variable satisfying $P(1)=1^{1}$. In the next section we show that it is indeed the case.

2 Proof

First, we prove a Lemma: if the numbers x_{1} up to x_{n} are relatively prime, then so are x_{1}^{d} up to x_{n}^{d} for any integer $d \geq 1$. We shall provide an explicit formula showing this. The proof is by induction. When $d=1$ there is nothing to prove. Now suppose the claim is true for all $d-1$, and we'll prove it for d. We are given integers a_{i} such that $\sum a_{i} x_{i}=1$, and other integers b_{i} such that $\sum b_{i} x_{i}^{d-1}=1$. In order to find a linear combination in the $x_{i}^{d} \mathrm{~S}$ totalling one, we shall look at powers of $\sum a_{i} x_{i}$. Each such power, when expanded, is a sum of monomials. We shall call a monomial representable if it is a linear combination in the $x_{i}^{d} \mathrm{~s}$. If all the monomials are representable, so is the power, and we are done.

When is a monomial representable? If it is divisible by x_{i}^{d} for some i then it is certainly representable. Next suppose the monomial is $\prod x_{i}^{d_{i}}$, where $d_{i} \geq 1$ for all i. When multiplied by any x_{i}^{d-1}, it becomes a multiple of x_{i}^{d}, hence representable. Thus $\left(\prod x_{i}^{d_{i}}\right)\left(\sum b_{i} x_{i}^{d-1}\right)=\prod x_{i}^{d_{i}}$ is representable. Summarizing, a monomial is representable if either one of its powers is at least d, or none is zero. If we raise $\sum a_{i} x_{i}$ to a high enough power, we can guarantee that it happens: indeed, when raising to the $((d-1)(n-1)+1)$ th power, each monomial has total degree $(d-1)(n-1)+1$. If the degrees are split among less than n variables, at least one will have degree at least d.

[^0]Second, we use the Lemma to prove our Theorem. By the lemma, there are polynomial expressions a_{1} up to a_{n} that satisfy $\sum a_{i} x_{i}^{n}=1$. We will build an expression based on the elementary symmetric function equaling $\sum a_{i} x_{i}^{n}$. Our first summand is $\left(\sum a_{i} x_{i}^{n-1}\right)\left(\sum x_{i}\right)$. This gives us $\sum a_{i} x_{i}^{n}$ together with leftovers $a_{i} x_{i}^{n-1} x_{j}$. To get rid of these leftovers, we subtract $\left(\sum a_{i} x_{i}^{n-2}\right)\left(\sum x_{i} x_{j}\right)$. This gives us new leftovers of the form $a_{i} x_{i}^{n-2} x_{j} x_{k}$. Continuing this way, the penultimate step will create the leftovers $a_{i} \prod x_{j}$. These can be eliminated by adding or subtracting $\sum a_{i} \prod x_{i}$, completing the proof.

Let's see how all of this works in the first two cases. When $n=2$, we need to show first that if x and y are mutually prime, then so are their squares. We are told to raise $a x+b y=1$ to the $(1 \cdot 1+1)$ th power, giving $1=(a x+b y)^{2}=a^{2} x^{2}+b^{2} y^{2}+2 a b x y$. The first two terms are evidently representable. The third term is representable since $2 a b x y=2 a b x y(a x+b y)=2 a^{2} b y \cdot x^{2}+2 a b^{2} x \cdot y^{2}$. Putting it all together,

$$
1=(a x+b y)^{2}=a^{2}(1+2 b y) x^{2}+b^{2}(1+2 a x) y^{2}
$$

So we have c and d that satisfy $c x^{2}+d y^{2}=1$. The final step is

$$
1=c x^{2}+d y^{2}=(c x+d y)(x+y)-(c+d) x y
$$

Next we move to $n=3$. First we show that if x, y and z are mutually prime, then so are their squares. This time we are told to raise $a x+b y+c z$ to the $(2 \cdot 1+1)$ th power, giving us monomials of the forms $x^{3}, x^{2} y$ and $x y z$. The first two are easy to represent, and the third can be represented as $x y z(a x+b y+c z)=a y z \cdot x^{2}+b x z \cdot y^{2}+c x y \cdot z^{2}$.

The next step is to show that if x, y and z are mutually prime, then so are their cubes. Now we are obliged to raise $a x+b y+c z$ to the fifth power. The resulting monomials are of the forms $x^{5}, x^{4} y, x^{3} y^{2}, x^{3} y z$ and $x^{2} y z$. The first four are trivial to represent. To represent $x^{2} y z$, we use the fact that some A, B and C satisfy $A x^{2}+B y^{2}+C z^{2}=1$. Then $x^{2} y z=x^{2} y z\left(A x^{2}+B y^{2}+C z^{2}\right)=$ $A x y z \cdot x^{3}+B x^{2} z \cdot y^{3}+C x^{2} y \cdot z^{3}$.

Now we are ready to the final step. Armed with α, β and γ that satisfy $\alpha x^{3}+\beta y^{3}+\gamma z^{3}$, we note that
$1=\alpha x^{3}+\beta y^{3}+\gamma z^{3}=\left(\alpha x^{2}+\beta y^{2}+\gamma z^{2}\right)(x+y+z)-(\alpha x+\beta y+\gamma z)(x y+x z+y z)+(\alpha+\beta+\gamma) x y z$.

[^0]: ${ }^{1}$ In other words, we seek a formula of the form $\sum P_{i} \sigma_{i}$, where every P_{i} is a polynomial in the $x_{i} \mathrm{~s}$ and the $a_{i} \mathrm{~s}$ with integral coefficients, that equals one as long as $\sum a_{i} x_{i}=1$.

