An Equational Proof

Let's prove that if $(x, y)=1$ then $(x+y, x y)=1$. The proof is mere calculation. It's given that some integers a and b satisfy $a x+b y=1$. Thus

$$
\begin{aligned}
1 & =(a x+b y)^{2} \\
& =a^{2} x^{2}+b^{2} y^{2}+2 a b x y \\
& =a^{2}\left(x^{2}+x y\right)+b^{2}\left(y^{2}+x y\right)-\left(a^{2}+b^{2}-2 a b\right) x y \\
& =\left(a^{2} x+b^{2} y\right)(x+y)-(a-b)^{2} x y
\end{aligned}
$$

A Boring Proof

Let's prove that if $(x, y)=1$ then $(x+y, x y)=1$. The proof is through the fundamental theorem of arithmetic. Suppose that the prime p divides $x y$. It must divide one of x and y, say x. As $(x, y)=1$, it cannot divide y, hence cannot divide $x+y$.

