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Our goal in this sketch is to give an exposition of Independent Sets in Graph Powers are Almost
Contained in Juntas by Dinur, Friedgut and Regev, as applied to intersecting families by Dinur
and Friedgut in Intersecting families are essentially contained in juntas.

1 Constant p

Let F be an intersecting family on n points, and let p ≤ 1/2. We define the distribution µp,p on
pairs of subsets A,B as follows: for each element i, with probability p put it in A, with probability
p put it in B, and with probability 1− 2p put it in neither.

We would like to prove the following result:

Theorem 1. If F is an intersecting family then for every p < 1/2 and 󰂃 > 0 there exists a junta
H such that:

(a) F is almost contained in H: µp(F \ H) ≤ 󰂃.

(b) H is almost intersecting: if A,B ∼ µp,p then Pr[A,B ∈ H] ≤ 󰂃.

We comment that this has recently been improved by Friedgut and Regev, Kneser graphs are
like Swiss cheese, who showed that H can be assumed to be intersecting. This has been generalized
further by Lifshitz, Hypergraph removal lemmas via robust sharp threshold theorems.

Let q = 1− p. The starting point is the observation that
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(Here the inner product is with respect to µp.) To see this, it suffices to check that
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In particular, this shows that if F is intersecting and f = 1F then 〈f, T−p/qf〉 = 0.
How would we get a junta out of f? Suppose that f was obtained from a junta by taking

a random constant fraction of it. If we looked at T1−ηf then we essentially get back the junta,
multiplied by the constant fraction.

For an appropriate parameter η, we look at g = T1−ηf . It is easy to check that Inf[g] = Oη(1),
and so we can extract the junta variables out of g by considering the set J of all variables with
influence at least γ, for some constant γ.
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In order to guarantee property (a) in the theorem, it is natural to choose the family H by taking
all slices on which the expected value of g is at least 󰂃. Indeed, let f̃ , g̃ result from averaging over
all non-junta coordinates; note g̃ = T1−ηf̃ . Note also that µp(F \ H) = E[f̃1H]. Therefore

µp(F \ H)2 = E[f̃1H]
2 ≤ 〈f̃1H, T1−ηf̃1H〉 ≤ 〈f̃1H, g̃〉 ≤ 󰂃E[f̃1H] = 󰂃µp(F \ H).

The more challenging property to prove is property (b). While g spans few edges, it could be
that H spans many more edges, since we chose all fibers with density at least 󰂃 (rather than just
with at least constant density). The proof combines a version of Majority is Stablest with small-set
expansion. We will show that if µp,p(H) ≥ 󰂃, then g must contain an influential coordinate outside
of J , contradicting the definition of J .

For an appropriate parameter τ , for every a ∈ {0, 1}J we let L(a) consist of all variables of
influence at least τ in the a-fiber of g. As above, these lists have constant size.

Consider any two a, b ∈ {0, 1}J . By construction, E[g(a, ·)],E[g(b, ·)] ≥ 󰂃. Majority is Stablest
shows that either 〈g(a, ·), T−p/qg(b, ·)〉 ≥ δ (for some constant δ), or g(a, ·), g(b, ·) must contain a
common influential variable, that is, L(a) and L(b) intersect.

Since 〈f, T−p/qf〉 = 0, calculation shows that 〈g, T−p/qg〉 is small, hence 〈g(a, ·), T−p/qg(b, ·)〉 is
small on average. By choosing parameters appropriately, we can ensure that for a, b ∼ µp,p({0, 1}J),
the probability that L(a) ∩ L(b) ∕= ∅ is at least 󰂃/2. We would like to conclude that there exists
some label ℓ which appears in many sets L(a); for an appropriate choice of the parameters, this
will imply that g must contain an influential coordinate outside of J , contradicting its definition.

A random choice of labels ℓ(a) ∈ L(a) will satisfy Pra,b∼µp,p [ℓ(a) = ℓ(b)] = Ω(󰂃). In particular,
we can find a set of vertices V with the same label ℓ such that Pra,b∼µp,p [a, b ∈ V ] = Ω(󰂃)µp(V )2.
Since there are Ω(󰂃) edges inside V , small-set expansion implies that µp(V ) is large.

2 Small p

For small p, Dinur and Friedgut proved the following result.

Theorem 2. If F is an intersecting family then there is an element i such that µp(F \Si) = O(p2)
for all p ≤ 1/2, where Si = {S : S ∋ i}.

The proof uses Friedgut’s junta theorem. Dinur and Friedgut also proved the following gener-
alization: for every d there is an intersecting Od(1)-junta G such that µp(F \ G) = O(pd).

We start by observing that F can be assumed to be monotone, since the upset of F is also
intersecting. We can also assume that p ≤ 1/3, since otherwise the statement is trivial.

Russo’s lemma together with Friedgut’s junta theorem shows that for some q ∈ (1/3, 1/2), the
family F is 󰂃-approximated by a junta J depending on a set J of O󰂃(1) coordinates; we will choose
󰂃 later on.

We start by bounding the number of sets in F which are disjoint from J . Let F0 ⊆ {0, 1}J
consist of those sets S ⊆ J such that S ∈ F . We have

󰂃 ≥ µq(F \ J ) ≥ µJ
q (J )µJ

q (F0),

showing that

q ≥ µq(F) ≥ µq(J )− 󰂃 ≥ 1− 󰂃

µq(F0)
− 󰂃,
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and so
µq(F0) ≤

󰂃

1− q − 󰂃
.

For small enough (but constant) 󰂃 > 0, this implies that µq(F0) ≤ q2, and so the Kahn–Kalai
isoperimetric theorem shows that µp(F0) ≤ p2.

Let us now define a J-junta I by taking all fibers A ⊆ J such that PrS∼µp [S ∈ F ∧S∩J = A] >

p2. The argument above shows that the empty fiber is not in I. By construction, µp(F\I) ≤ 2|J |p2,
and it remains to show that I is intersecting.

Note first that if |A| ≥ 2 then since Pr[S ∩ J = A] ≤ p2, none of these fibers belong to I. If
the {i}-fiber belongs to I then Pr[S ∩ J = {i}] ≤ p implies that PrS∼µp [S ∈ F | S ∩ J = {i}] > p.
If two singleton fibers belong to I then the corresponding fibers of F have geometric mean larger
than p, contradicting the cross-intersecting Erdős–Ko–Rado theorem. We conclude that all sets in
I (if any) contain some element i.

3 Forbidden intersection

Finally, let us briefly describe, in general terms, the proof in Ellis, Keller and Lifshitz, Stability for
the Complete Intersection Theorem, and the Forbidden Intersection Problem of Erdős and Sós.

Our goal is to prove that the Ahlswede–Khachatrian theorem holds even if we relax the as-
sumption from t-intersecting to not-exactly-(t− 1)-intersecting.

The first step is to prove a regularity lemma, showing that every family can be approximated
by a J-junta G such that:

(a) µp(F \ G) ≤ 󰂃.

(b) For every A ⊆ J , if G contains the A-fiber then the A-fiber of F has measure at least 󰂃/2, and
is pseudorandom: setting the value of h variables can only affect the measure by up to δ.

Here 󰂃, δ, h are parameters, and p needs to be bounded away from 0, 1.
Now let F be a not-exactly-(t−1)-intersecting family of large measure. Applying the regularity

lemma, we approximate F by some J-junta G. The pseudorandomness condition implies (via an
argument similar to the one in Section 2) that G is in fact t-intersecting: roughly speaking, if some
A,B have intersection smaller than t, then we can find in the corresponding fibers of F two sets
with intersection exactly t− 1, using pseudorandomness to reduce to the case |A ∩B| = t− 1, and
then using bounds on cross-intersecting families.

Since G is t-intersecting and has large measure, it has to be close to a family optimal for the
Ahlswede–Khachatrian theorem (this follows from a stability version of the theorem, proved by a
modification of the standard shifting proof). A further bootstrapping argument shows that the
measure of F is at most the measure of an optimal family for the Ahlswede–Khachatrian theorem.

The same kind of regularity lemma is also used by Friedgut and Regev and by Lifshitz to prove
their strengthened versions of Dinur–Friedgut–Regev.
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