
Constraint Satisfaction Problems

Lecture Notes

Yuval Filmus

June 12, 2022

Contents

1 Introduction 3
1.1 What are CSPs? . 3
1.2 Some questions . 4
1.3 Plan of this course . 4
1.4 Technical snippets . 6

2 Schaefer’s theorem 7
2.1 Gadget reductions . 7
2.2 Arc consistency . 8
2.3 Extending partial solutions . 9
2.4 Polymorphisms and invariants . 11
2.5 Galois connection . 12
2.6 Schaefer’s theorem . 14
2.7 Alternative statement . 16

3 Approximability: MAX-3LIN 19
3.1 Approximation algorithms and inapproximability . 19
3.2 PCP theorem, label cover, parallel repetition . 20
3.3 Long code, linearity testing (1) . 22
3.4 Fourier analysis and linearity testing (2) . 23
3.5 Dictatorship testing and folding . 24
3.6 Hardness for MAX-3LIN . 26

3.6.1 Variant . 29

4 Approximability: MAX-CUT 30
4.1 Goemans–Williamson algorithm for MAX-CUT . 30
4.2 Algorithmic gap . 33
4.3 Integrality gap . 34
4.4 Hardness of approximation, and the unique games conjecture 36
4.5 Extensions: O’Donnell–Wu and Raghavendra’s theorem . 42

5 Proof complexity 43
5.1 SAT solving and Resolution . 43
5.2 DPLL and Horn SAT . 45
5.3 2SAT and width . 46
5.4 Tseitin contradictions . 46
5.5 Size and width . 48

1

5.6 Random kSAT . 50
5.7 Certifying unsatisfiability . 52

6 Exponential time algorithms for kSAT 56
6.1 Schöning’s algorithm . 56
6.2 PPZ . 59

7 Isolation lemma and approximate counting/sampling 62
7.1 Unique-SAT and the isolation lemma . 62
7.2 Approximate counting and sampling . 64

2

1 Introduction

1.1 What are CSPs?

A constraint satisfaction problem consists of a collection of variables and constraints. Each variable has an
associated domain. The corresponding problem asks whether there is an assignment to the variables that
satisfies all constraints; though this is not the only interesting problem which one can ask about a CSP
instance. We start with two examples: SAT and coloring.

SAT SAT is the prototypical NP-complete problem. As usually described, the input is a CNF, that is, a
conjunction of clauses, each of which is a disjunction of literals; and the desired output is whether the CNF
has a satisfying assignment. We can think of the various clauses as constraints. For example, the clause
x ∨ y ∨ z states that one of the variables x, y, z must be assigned True. The instance is satisfiable if some
truth assignment satisfies all constraints.

k-coloring Given a graph and an integer k, the k-coloring problem asks whether the graph G has a legal
coloring using k colors. When k is fixed, we can model this as a CSP whose variables are the colors of the
vertices c(v) ∈ {1, . . . , k}. Each edge {u, v} gives us a constraint c(u) 6= c(v). The graph is k-colorable if
some coloring satisfies all these constraints.

Other well-known problems also correspond to instances of CSPs, but the problem itself is different. Here
are three examples.

MAX-SAT Given a CNF, the goal is to find a truth assignment that satisfies as many clauses as possible.
More generally, given a CSP instance, one can ask for a variable assignment that satisfies as many constraints
as possible.

MAX-CUT Given a graph, the goal is to find a partition of the vertex set into two parts that cuts the
maximum number of edges. The corresponding CSP instance has a Boolean variable c(v) for each vertex,
signifying which part v belongs to, and a constraint c(u) 6= c(v) for each edge {u, v}. The goal is to find a
variable assignment which satisfies the maximal number of constraints.

Vertex Cover Given a graph, the goal is to find a subset of vertices which is incident to all edges. The
corresponding CSP instance has a Boolean variable c(v) for each vertex, and a constraint c(u)∨ c(v) for each
edge {u, v}. The goal is to find a variable assignment of lowest weight which satisfies all constraints.

In all problems listed above, the variables are restricted to a particular domain, and the constraints are
of a particular form, namely, they come from a particular inventory of constraints:

� In SAT and MAX-SAT, the variables are Boolean (such problems are known as Boolean CSPs), and
the constraints are of the form xi1 ∨ · · · ∨ xia ∨ x̄j1 ∨ · · · ∨ x̄jb .

� In k-coloring and in MAX-CUT, the variables have the domain {1, . . . , k} (where k = 2 in MAX-CUT),
and the only allowed constraints are of the form xi 6= xj .

� In Vertex Cover, the variables are Boolean, and the constraints are of the form xi ∨ xj .

There are other ways to restrict CSP instances. For example, we could require that every variable appear
at most (or exactly) so many times, or that the variable-constraint graph satisfy some property (say, it is
planar). We won’t consider such restrictions in this course. Other restrictions, which might show up, are on
the solution space. For example, we might ask what happens if there is at most one satisfying assignment.

3

1.2 Some questions

Given a CSP instance, here are some questions we might be interested in:

� Is the instance satisfiable?

� How many constraints can we satisfy simultaneously?

� What is the minimum weight of a satisfying assignment?

� How many satisfying assignments are there?

� What is the parity of the number of solutions?

� If the instance is satisfiable, can we sample a satisfying assignment?

� If the instance is not satisfiable, can we prove this?

The complexity of these questions depends on the allowed constraints. Another line of research asks what
happens for random instances, suitably defined; this research direction is related to ideas from statistical
mechanics.

We will concentrate on the case of Boolean CSPs in which the allowed constraints come from a finite
set I. Each element of I is a predicate P ⊆ {0, 1}k. A constraint is an instance of P if it is of the
form (xi1 , . . . , xik) ∈ P , where xi1 , . . . , xik are arbitrary variables, not necessarily distinct. We denote the
collection of all such CSPs by CSP(I).

For example, 3SAT is CSP({P0, P1, P2, P3}), where

P0(x, y, z) = x̄ ∨ ȳ ∨ z̄,
P1(x, y, z) = x ∨ ȳ ∨ z̄,
P2(x, y, z) = x ∨ y ∨ z̄,
P3(x, y, z) = x ∨ y ∨ z.

1.3 Plan of this course

The course studies three main problems, from three different areas:

1. How difficult is deciding whether an instance of CSP(I) is satisfiable?

2. How well can we approximate the maximum number of satisfied constraints for an instance of CSP(I)?

3. Can we prove that unsatisfiable instances of SAT are indeed unsatisfiable?

Apart from these problems, we might also study several other subjects:

� The complexity of SAT under the promise that there is at most one solution.

� Counting and sampling solutions of kSAT.

� Exponential time algorithms for kSAT.

� Algorithms which certify that a random kSAT is unsatisfiable.

Let us now expand on the three main problems highlighted above.

4

Complexity of the satisfiability version of CSP(I) It is well-known that 3SAT is NP-complete, whereas
2SAT is in P. Are there other possibilities?

Ladner’s theorem [Lad75], proved via diagonalization, states that if P 6=NP then some language in NP
is neither in P nor NP-hard; we call such problems NP-intermediate. Are there natural such problems?
Candidates include decision versions of Factoring, the Graph Isomorphism problem, and meta-complexity
problems such as the Minimum Circuit Size Problem (MCSP). A celebrated result of Schaefer, known as
Schaefer’s dichotomy theorem [Sch78], states that in the setting of Boolean CSPs, CSP(I) is never NP-
intermediate, that is, for each finite I, satisfiability of CSP(I) is either in P or it is NP-complete. Feder and
Vardi [FV99] conjectured that a similar result holds for any finite domain. A long line of work has recently
succeeded in proving this conjecture, known as the dichotomy theorem [Bul17, Zhu20].

We will present a modern proof of Schaefer’s theorem, following notes of Hubie Chen [Che09], which uses
universal algebra. In contrast to Schaefer’s original proof, the modern proofs give an efficient algorithm for
determining whether CSP(I) is easy or hard.

Complexity of the optimization version of CSP(I) Consider the problem 3XOR, in which each
constraint is of the form xi ⊕ xj ⊕ xk = b. A random assignment satisfies half of the constraints, and this
gives a randomized 1/2-approximation to MAX-3XOR, the optimization version of 3XOR; the algorithm can
be derandomized in various ways. Can we do better, in (randomized) polynomial time?

Let the value of a 3XOR instance be the maximum fraction of constraints satisfied by any satisfying
assignment. H̊astad [H̊as01] showed that it is NP-hard to tell apart instances with value ≥ 1 − ε from
instance with value ≤ 1/2 + ε, for any constant ε > 0. In other words, there is a polynomial time reduction
f from SAT to MAX-3XOR such that if ϕ is satisfiable then val(f(ϕ)) ≥ 1− ε, and if ϕ is unsatisfiable then
val(f(ϕ)) ≤ 1/2 + ε. This shows that the trivial random assignment algorithm is in fact optimal!

H̊astad’s proof builds on the PCP theorem [AS98, ALM+98] and on Raz’s parallel repetition theo-
rem [Raz98], two difficult results which we will not cover in class. H̊astad makes heavy use of Boolean
function analysis [O’D14], in a relatively elementary form. We will cover all necessary preliminaries in class.

Another prominent problem is MAX-CUT. A random assignment cuts half the edges, and so gives
a 1/2-approximation. Using semidefinite programming, Goemans and Williamson [GW95] gave a 0.878-
approximation algorithm. The approximation ratio itself is the solution of some optimization problem.
Surprisingly, this approximation ratio is best possible, assuming the Unique Games Conjecture [Kho02]. We
will describe the algorithm and its analysis in class (the only part that we skip is an efficient algorithm for
solving SDPs); the unique games conjecture; and the hardness proof that shows that 0.878 is the optimal
approximation ratio [KKMO07].

Raghavendra [Rag08] generalized the work on MAX-CUT to arbitrary CSPs. He showed that every CSP
has an optimal approximation algorithm (assuming the unique games conjecture) which uses semidefinite
programming. We will not describe this very interesting result.

Proving that CSP(I) is unsatisfiable We can prove that a SAT instance is satisfiable by giving a
satisfying assignment; this is the essence of NP. Can we similarly prove that a given instance is unsatisfiable?
We don’t expect this to be the case, since otherwise NP=coNP, but can we point out specific instances which
are difficult to refute in particular ways?

SAT solvers are algorithms that get as input a SAT instance ϕ, and output either a satisfying assignment
or a transcript of the algorithm, which constitutes a proof that ϕ is unsatisfiable. SAT solvers are based on
a simple algorithm known as DPLL [DP60, DLL62]. At each point, the algorithm chooses a variable, and
tries both assignments to it; a leaf which contradicts a clause of ϕ can be pruned away. Modern SAT solvers
use an additional trick: if the current assignment is already known to cause a contradiction, then it can also
be pruned away; this is known as clause learning [MSS99, BS97], and this type of algorithm is known as
CDCL.

It turns out that when run on an unsatisfiable CNF, the transcript of DPLL solvers can be converted to a
proof system known as treelike Resolution, and the transcript of CDCL solvers can be converted to a stronger
proof system known as (general) Resolution. Using a technique of Ben-Sasson and Wigderson [BSW01], we

5

will describe simple unsatisfiable CNFs which are hard to refute in Resolution. Using the same technique,
we will also show that random CNFs are hard to refute in Resolution.

1.4 Technical snippets

Let us conclude this introduction with a few technical snippets.

Deterministic 1/2-approximation algorithm for MAX-3XOR Above we mentioned a trivial 1/2-
approximation algorithm for MAX-3XOR: choose a random assignment. This algorithm is easy to deran-
domize using the method of conditional expectations. The idea is to compute, for a given MAX-3XOR
instance ϕ and partial assignment α, the expected number E(α) of satisfied constraints in a random truth
assignment extending α. The calculation is easy, since each constraint is either satisfied by α, refuted by α,
or is satisfied by a random extension of α with probability 1/2.

How does this help us? Let x1, . . . , xn be the variables appearing in the instance, and suppose that
the instance has m constraints. We know that the expected number of constraints satisfied by a random
assignment is m/2. By calculating E(x1 = 0) and E(x1 = 1), we can find an assignment α1 to x1 such that
E(x1 = α1) ≥ m/2. Continuing in this way, we can find assignments for the other variables, maintaining the
invariant the the current partial assignment α satisfies E(α) ≥ m/2. Eventually we obtain a total assignment
which satisfies at least m/2 constraints.

When calculating E(x1 = α1), the only terms which depend on α1 correspond to constraints of the form
x1 = b: each such constraint contributes 1 to E(x1 = b) and 0 to E(x1 = b̄). This gives another description
of the algorithm: choose the value of xi which maximizes the number of constraints of the form xi = b which
are satisfied. In other words, this is just the greedy algorithm.

Exercise Generalize this algorithm to MAX-E3SAT, the variant of MAX-3SAT in which each clause con-
sists of three different literals.

Finding a solution using a SAT oracle Using similar ideas, we can reduce the search version of SAT
(given a satisfiable instance, find some satisfying assignment) to its decision version. Given a CNF ϕ and
access to a SAT oracle, we proceed as follows. First, we find a value α1 of x1 such that ϕ|x1=α1

is satisfiable.
We proceed in this way, finding values for the other variables, until we find a satisfying assignment.

Exercise #SAT is the problem of counting the number of solutions to a SAT instance. Show that using
an oracle to #SAT you can sample a random satisfying assignment of a given CNF.

Exercise Show how to find a legal 3-coloring of a 3-colorable graph using an oracle for the decision version
of 3-coloring.

6

2 Schaefer’s theorem

This section mostly follows Hubie Chen’s charming notes [Che09], with additional proofs from Vı́ctor Dal-
mau’s PhD thesis [Dal00].

2.1 Gadget reductions

SAT is the prototypical NP-complete problem. Its special case, 3SAT, is also NP-complete. Let us now show
that two more variants are NP-complete: 1-in-3SAT and NAE-3SAT.

1-in-3SAT Let P be the following predicate on three Boolean variables:

P = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

An instance of 1-in-3SAT is a collection of constraints of the form P (x, y, z), where x, y, z are arbitrary
literals. (Since we are allowing literals rather than variables, this is not quite CSP(P), but it is CSP(P) for
a slightly larger collection of predicates.)

We can show that 1-in-3SAT is NP-hard using a gadget reduction from 3SAT, which translates a disjunc-
tion of three literals to an equivalent collection of 1-in-3 clauses. Let the disjunction in question be x∨ y∨ z,
where each of x, y, z is a literal. Consider the following matrix of variables:

x x′ x′′

y y′ y′′

z z′ z′′

The constraints are:

� Each row contains exactly one satisfied literal.

� The second and third columns each contain at most one satisfied literal.

To express the at most constraint, say on the second column, we use the following gadget:

P (x′, y′, u′) ∧ P (x′, z′, v′) ∧ P (y′, z′, w′).

This clearly implies that at most one of x′, y′, z′ is satisfied, since if, for example, both x′ and y′ are satisfied,
then P (x′, y′, u′) cannot hold. Conversely, if none of x′, y′, z′ is satisfied, we can satisfy the constraints by
taking u′, v′, w′ to be true, and if only x′ is satisfied, then we can take u′, v′ to be false and w′ to be true.

In total, x ∨ y ∨ z is expressed as

P (x, x′, x′′) ∧ P (y, y′, y′′) ∧ P (z, z′, z′′)

∧P (x′, y′, u′) ∧ P (x′, z′, v′) ∧ P (y′, z′, w′)

∧P (x′′, y′′, u′′) ∧ P (x′′, z′′, v′′) ∧ P (y′′, z′′, w′′).

Why does this work? A satisfying assignment corresponds to a choice of one satisfied literal per row, with
each column being selected at most once. If there are at most two unsatisfied literals among x, y, z, then we
can choose the columns accordingly. In contrast, if all of x, y, z are unsatisfied, then the pigeonhole principle
shows that we much choose one of the other two columns twice.

We use different variables x′, y′, u′, v′, w′, x′′, y′′, u′′, v′′, w′′ for each clause. This is crucial in order to
guarantee the soundness of the reduction.

7

NAE-4SAT and NAE-3SAT Let Q be the following predicate on four Boolean variables:

Q = {0, 1}4 \ {(0, 0, 0, 0), (1, 1, 1, 1)}.

An instance of NAE-4SAT is a collection of constraints of the form Q(x, y, z, w), where x, y, z, w are arbitrary
literals. Here NAE stands for not all equal, since Q(x, y, z, w) holds if x, y, z, w do not all have the same
truth value.

We can show that NAE-4SAT is NP-hard using a different type of reduction from 3SAT, which is more
global. We pick a new variable v, and add it to all clauses. That is, we replace each constraint x∨ y∨ z with
the constraint Q(x, y, z, v), where the variable v is common to all clauses.

Why does this work? In one direction, we can extend an assignment satisfying the original 3SAT instance
to one satisfying the NAE-4SAT instance by simply setting v to false. In the other direction, we consider
two cases, depending on the value of v in an assignment satisfying the NAE-4SAT instance. If v is false, then
we simply erase it to obtain an assignment satisfying the 3SAT instance. If v is true, then we flip the truth
values of all variables; we get another assignment satisfying the NAE-4SAT instance, and so can proceed as
before.

Is there a gadget reduction like the one we had before? We will define such reductions formally later, but
we can already highlight an issue here. If an assignment satisfies an NAE-4SAT instance, then its complement
(obtained by flipping all truth values) also satisfies the instance. This means that any NAE-4SAT instance
which excludes assignments in which all of x, y, z are false, will necessarily also exclude assignments in which
all of x, y, z are true. In other words, since this symmetry is present in NAE-4SAT but absent from 3SAT,
we cannot expect a gadget reduction from 3SAT to NAE-4SAT.

As an aside, it is possible to gadget-reduce NAE-4SAT to its width 3 analog:

NAE(x, y, z, w)←→ NAE(x, y, t) ∧NAE(z, w,¬t).

This is just the analog of the usual reduction from SAT to 3SAT.

2.2 Arc consistency

The original proof of Schaefer’s theorem focused on three types of CSPs which are efficiently solvable: linear
equations, 2SAT, and Horn-SAT (a version of SAT in which each clause contains at most one positive literal).
Instead of 2SAT and Horn-SAT, we will present, in this section and the following one, two general strategies
for solving CSPs, and identify classes of CSPs in which these strategies work. These algorithm will point
the way to the algebraic proof of Schaefer’s theorem. The connection to the original proof is explored in
Section 2.7.

Consider a Boolean CSP instance consisting of constraints P1, . . . , Pm, where Pj has arity dj and is
applied to the variables xj,1, . . . , xj,dj . We will maintain a domain of possible values for each variable.
Originally, the domain of each variable xi is Di = {0, 1}. Suppose that for some constraint Pj and for some
variable xj,k appearing in the constraint, the following happens:

Every satisfying assignment of Pj(xj,1, . . . , xj,dj) in which xj,1 ∈ Dj,1, . . . , xj,dj ∈ Dj,dj satisfies xj,k = b.

In this case, we know that any assignment satisfying the CSP must have xj,k = b, and accordingly, we
can set Dj,k = {b}. Similarly, for some constraint Pj it might be the case that no satisfying assignment of
Pj(xj,1, . . . , xj,dj) satisfies xj,1 ∈ Dj,1, . . . , xj,dj ∈ Dj,dj . If this is the case, then we can declare that the
instance is unsatisfiable.

Each variable can be pruned at most once, so the pruning process stabilizes within n steps, with one of
the following outcomes. Either the instance was found to be unsatisfiable, or the following holds:

For each constraint Pj , for each variable xj,k, and for each b ∈ Dj,k, there is a satisfying assignment of

8

Pj(xj,1, . . . , xj,dj) in which xj,1 ∈ Dj,1, . . . , xj,dj ∈ Dj,dj and xj,k = b.

In general, this doesn’t guarantee that the instance is satisfiable. For example, consider the 2SAT instance

(x ∨ y) ∧ (¬x ∨ y) ∧ (x ∨ ¬y) ∧ (¬x ∨ ¬y).

Here Dx = Dy = {0, 1}, and no truth value can be pruned away, yet the instance is unsatisfiable. Neverthe-
less, in some cases, we are able to guarantee that the instance is satisfiable. It is natural to try to extract
a satisfying assignment from the domains D1, . . . , Dn. There are two canonical choices: bi = max(Di) and
bi = min(Di). Let us check when does the choice bi = max(Di) work.

Let us consider an arbitrary constraint Pj(xj,1, . . . , xj,dj). By definition, for each k ∈ {1, . . . , dj} there

exists an assignment x
(k)
j,1 , . . . , x

(k)
j,dj

satisfying Pj such that x
(k)
j,k = bj,k and x

(`)
j,` ∈ Dj,` for all ` 6= k. If bj,` = 0

then Dj,` = {0} and so x
(k)
j,` = 0 for all k, and if bj,` = 1 then x

(`)
j,` = 1. Therefore bj,` = x

(1)
j,` ∨ · · · ∨ x

(dj)
j,` . In

other words,

bj,1, . . . , bj,dj is a disjunction of satisfying assignments of Pj .

We conclude that the algorithm works whenever each predicate Pj satisfies the following property: the
disjunction of satisfying assignments is also a satisfying assignment. In this case, we say that the function
g(x, y) = x ∨ y is a polymorphism of Pj .

Polymorphisms have already showed up in the preceding section: NAE-4SAT had negation g(x) = ¬x
as a polymorphism, and this prevented a gadget reduction from 3SAT to NAE-4SAT. This connection
between polymorphisms and gadget reductions is the driving force behind the algebraic approach to Schaefer’s
theorem.

Exercise When does the choice bi = min(Di) work?

Exercise Extend the algorithm to the non-Boolean case. When does it work?

2.3 Extending partial solutions

Before elucidating the connection between polymorphisms and gadget reductions further, let us describe a
generalization of arc consistency, in which we keep track of domains of sets of variables. We use the same
setup as the preceding section: the constraints are P1, . . . , Pm, where Pj is a constraint on xj,1, . . . , xj,dj .

In the preceding section, we kept track of the domains of single variables. Now we want to keep track of
the domains of small sets of variables, say of size ` (the size has to be constant in order to keep the algorithm
efficient). For each set S of up to ` variables, we keep a domain DS ⊆ {0, 1}S , initialized at {0, 1}S . We
then prune these sets, as in the arc consistency algorithm: for each partial assignment bS ∈ DS and each
constraint Pj whose domain includes S, we check whether Pj has a satisfying assignment x in which xS = bS
and xT ∈ DT for all T ⊆ dom(Pj) of size at most `. If this is not the case, we remove bS from DS and
continue.

Another reason to prune an assignment is even simpler: any bS ∈ DS whose restriction to T ⊂ S isn’t
contained in DT can be removed. Similarly, any bT ∈ DT which has no extension in DS for some S ⊇ T can
be removed. After O(n`) pruning steps of both types, either one of the domains DS shrinks to the empty
set, in which case the instance is unsatisfiable; or otherwise, the domains DS satisfy the following three
properties:

� For each constraint Pj , for each S ⊆ dom(Pj) of size at most `, and for each bS ∈ DS , there exists
a satisfying assignment x of Pj such that xT ∈ DT for all T ⊆ dom(Pj) and xS = bS .

� The restriction of each bS ∈ DS to T ⊂ S belongs to DT .

9

� If T ⊆ S and bT ∈ DT then some bS ∈ DS satisfies bS |T = bT .

For each set S of size at most `, each bS ∈ DS is a partial solution, that is, an assignment of a subset of the
variables which doesn’t cause an immediate contradiction. Formally, for each constraint Pj , the restriction
of bS to the domain of Pj can be extended to a satisfying assignment of Pj . Indeed, if T = S ∩ dom(Pj),
then the restriction belongs to DT , and so can be extended to a satisfying assignment.

We are given partial solutions for every set of variables of size `. If we could extend it to larger and
larger partial solutions, we would eventually obtain a partial solution for the set of all variables, which is
just a satisfying assignment. How can such an extension process work out? Let us try to construct a partial
solution for x1, . . . , x`+1. For every i ∈ {1, . . . , ` + 1}, if we remove xi then there is some partial solution

b
(i)
1 , . . . , b

(i)
i−1, b

(i)
i+1, . . . , b

(i)
`+1 for the remaining variables. How do we combine them to a single assignment? In

the preceding section, we used the OR (or AND) function. Another intuitive choice is the majority function,
assuming for simplicity that ` is odd. Concretely, suppose that ` = 3. We wish to construct a partial solution
for x, y, z, w given the following partial solutions:

x y z w
a1 b1 c1
a2 b2 d2

a3 c3 d3

b4 c4 d4

Consider some constraint Pj whose domain contains only x, y, z. It could be that a1, b1, c1 is the only partial
solution of Pj , while the majority vote produces a different assignment. In order to solve this problem, we
strengthen our inductive goal.

The sets DS that we start with satisfy one more property: if |S| = ` − 1 and bS ∈ DS , then for each
v /∈ S we can extend bS to a partial solution of S ∪ {v} (just take any bS∪{v} ∈ DS∪{v}). We call this the
(`− 1)-extension property. We will attempt to show that for r ≥ `− 1, the r-extension property implies the
(r + 1)-extension property. If this holds then we can start with an arbitrary partial solution of x1, . . . , x`−1

and extend it to the variables x`, . . . , xn, one by one, eventually constructing a satisfying assignment.
Let us try to prove the `-extension property given the (` − 1)-extension property. Suppose that we are

given a partial solution b1, . . . , b`, and we want to extend it to x`+1. Just as before, it is natural to remove

each bi in turn, and use the (` − 1)-extension property to get some value b
(i)
`+1 for x`+1. Once again, it is

natural to aggregate these values by taking a majority vote. Concretely, suppose that ` = 3. The partial
solutions we are considering, for variables x, y, z, w, are

x y z w
a b d1

a c d2

b c d3

We let d be the majority of d1, d2, d3. When is a, b, c, d a partial solution? It is clearly a partial solution
for any constraint which doesn’t involve w. Now consider any constraint Pj which does involve w, say one
which involves all variables (as will transpire, this doesn’t matter). We can “fill in the blanks” to obtain
partial solutions of Pj which involve all variables:

x y z w
a b c′ d1

a b′ c d2

a′ b c d3

Observe that a, b, c, d is the majority of all of these partial solutions. In other words, if each constraint Pj is
closed under the majority operation, then the 2-extension property implies the 3-extension property.

From now on, we consider only the case ` = 3, and assume that all constraints Pj are invariant under
the majority operation. A very similar proof can be used to show that the r-extension property implies the

10

(r + 1)-extension property for all r ≥ 3. Given a partial solution b1, . . . , br, instead of removing each bi in
turn, it suffices to remove b1, b2, b3 in turn, and run exactly the same argument as above; the only difference
is that the two tables contain more identical columns.

Using the terminology of the preceding section, we conclude that the algorithm works whenever each
predicate Pj has maj(x, y, z) as a polymorphism.

Exercise Extend the algorithm to the non-Boolean case. What kind of polymorphism do the predicates
Pj need in order for the algorithm to work, for a given value of `?

2.4 Polymorphisms and invariants

The two algorithms just presented work whenever all predicates are invariant under some operation, which
we called a polymorphism. Formally, a function g : Dk → D is a polymorphism of a predicate R ⊆ Dm

(which we think as a set of satisfying assignments) if the following holds for all arrays of assignments:

b
(1)
1 · · · b

(1)
m

...
. . .

...

b
(k)
1 · · · b

(k)
m

g(b
(1)
1 , . . . , b

(1)
1) · · · g(b

(1)
m , . . . , b

(k)
m)

If all the top rows are satisfying assignments of R, then so is the bottom row, which is obtained from the
other rows by applying g to each column. As a shorthand, we can use b(1), . . . , b(k) to represent the various
rows, and then g(b(1), . . . , b(k)) represents the final row, obtained from the preceding rows by columnwise
application of g.

Here are some examples:

� The constant function g() = d is a polymorphism of R if (d, . . . , d) is a satisfying assignment.

� The projection functions g(x1, . . . , xk) = x` are polymorphisms of all predicates.

� The majority function maj(x, y, z) is a polymorphism of x1 ∨ x2: if x1 ∨ x2, y1 ∨ y2, z1 ∨ z2 hold then
by the pigeonhole principle, there exists i ∈ {1, 2} such that at least two of xi, yi, zi are true, which
implies that their majority is true.

� The OR function g(x, y) = x ∨ y is a polymorphism of x1 → x2: if both x1 → x2 and y1 → y2 hold
then either one of x2, y2 is true, in which case (x1 ∨ y1, x2 ∨ y2) = (?, T); or else both of x2, y2 are false,
in which case both of x1, y1 must be false, hence (x1 ∨ y1, x2 ∨ y2) = (F, F).

� The AND function g(x, y) = x ∧ y is also a polymorphism of x1 → x2: if both x1 → x2 and y1 → y2

hold then either one of x1, y1 is false, in which case (x1 ∧ y1, x2 ∧ y2) = (F, ?); or else both of x1, y1 are
true, in which case both of x2, y2 must be true, hence (x1 ∧ y1, x2 ∧ y2) = (T, T).

If Γ is a set of predicates then we denote by Pol(Γ) the set of all functions which are polymorphisms
of all predicates in Γ. The collection Pol(Γ) always contains all projections, and is closed under function
composition. We call a collection satisfying these two properties a clone. The smallest clone containing a
given family F of functions is called the closure of F , denoted [F]; the closure is obtained by adding all
projections and closing the resulting set under composition.

Going in the other direction, a predicate R is an invariant of a function g if g is a polymorphism of R.
If P is a set of functions then we denote by Inv(P) the set of all predicates which are invariant under all
functions in P . What can we say about Inv(P)? It respects gadget reductions.

11

Let us start by recalling the gadget reduction from the predicate D(x, y, z) = x ∨ y ∨ z to the predicate
P (x, y, z), which is true when exactly one of x, y, z is true:

D(x, y, z)←→∃x′, y′, z′, u′, v′, w′, x′′, y′′, z′′, u′′, v′′, w′′

P (x, x′, x′′) ∧ P (y, y′, y′′) ∧ P (z, z′, z′′)

∧P (x′, y′, u′) ∧ P (x′, z′, v′) ∧ P (y′, z′, w′)

∧P (x′′, y′′, u′′) ∧ P (x′′, z′′, v′′) ∧ P (y′′, z′′, w′′).

This gives a definition of D(x, y, z) in terms of the predicate P , which involves existential quantification.
If P is invariant under any polymorphism g, then so is D. To see this, let us notate the situation more
abstractly:

D(~x)←→ ∃~αφP (~x, ~α),

where φP is a conjunction of applications of P to various elements of ~x, ~α; in our case, ~x = (x, y, z),
~α = (x′, . . . , w′′), and φP is the conjunction of 9 applications of P . We can think of ~α as a witness for ~x. Now
suppose that g is a k-ary polymorphism of P . Given satisfying assignments ~x(1), . . . , ~x(k), let ~α(1), . . . , ~α(k)

be corresponding witnesses. Then g(~α(1), . . . , ~α(k)) witnesses that g(~x(1), . . . , ~x(k)) is a satisfying assignment
of D: all clauses of φP (~x, ~α) are satisfied since g is a polymorphism of P .

Here is another example. Let Q+(x) = x, Q−(x) = x̄, and E(x, y) = “x = y”; the last one is known as
the equality predicate. Consider two types of CSPs: CSP(Q+, Q−) and CSP(Q+, Q−, E). Both are trivial
to solve (though the former is in coNLOGTIME while the latter is L-complete), but there is no gadget
reduction from CSP(Q+, Q−, E) to CSP(Q+, Q−), since we can’t express equality using monadic predicates.
However, an algorithm for solving CSP(Q+, Q−) can be used to solve CSP(Q+, Q−, E), by eliminating the
equality predicates. For each predicate E(x, y), we simply eliminate y from the formula, replacing it with
x. This suggests that we allow our gadget reductions to use the equality predicate for free. Indeed, just like
projections are polymorphisms of all predicates, so the equality predicate is an invariant of all polymorphisms:
if x1 = y1, . . . , xk = yk then g(x1, . . . , xk) = g(y1, . . . , yk); this is the principle of substitution of equals for
equals.

We are now ready to present the formal definition of gadget reduction. A predicate R is pp-definable
from a set of predicates Γ if we can write

R(~x)←→ ∃~αφ(~x, ~α),

where φ is a conjunction of predicates from Γ ∪ {E} applied to arbitrary variables from ~x, ~α. (Here pp is
shortcut for primitive positive.)

If g is a polymorphism of Γ then it is a polymorphism of any relation which is pp-definable from Γ. In
other words, Inv(P) is closed under pp-definability. Such a collection of predicates is known as a coclone.
The smallest coclone containing a given set of predicates is called the closure of Γ, denoted 〈Γ〉; it is obtained
by closing under pp-definitions.

2.5 Galois connection

In order to prove that CSP(∆) is NP-hard using gadget reductions, we start with a known NP-complete
problem CSP(Γ), and show that each predicate Γ is pp-definable from ∆. In contrast, the algorithms in
Sections 2.2 and 2.3 rely on polymorphisms of ∆. We would like to show that these two approaches are
complementary: for each finite set of predicates ∆, either Pol(∆) is rich enough so that we can apply a
known algorithm in order to solve CSP(∆), or we can reduce some NP-complete CSP(Γ) to CSP(∆).

If Pol(∆) is small then it has many invariants, hopefully enough to include some NP-complete CSP. We
could show this by relating Inv(Pol(∆)) to 〈∆〉, the set of predicates pp-definable from ∆. One such relation
is almost trivial: if R is pp-definable from ∆ then R is invariant under all polymorphisms of ∆, as shown in
the preceding section, and so 〈∆〉 ⊆ Inv(Pol(∆)). Remarkably, the inverse inclusion also holds, whenever ∆
is finite: every relation in Inv(Pol(∆)) is pp-definable from ∆ !

12

Let R be any relation which is invariant under Pol(∆), and denote its satisfying assignments by ~t1, . . . ,~tm.
The set of satisfying assignments is closed under all m-ary polymorphisms of ∆. That is, if g is an m-ary
polymorphism of ∆ then g(~t1, . . . ,~tm) also satisfies R. Conversely, if we choose g to be the projection πi
to the i’th coordinate, then we get πi(~t1, . . . ,~tm) = ~ti. In other words, ~t is a satisfying assignment of R iff
~t = g(~t1, . . . ,~tm) for some m-ary polymorphism of ∆.

We can encode an m-ary polymorphism using Dm variables, whose names are g(d1, . . . , dm). The fact
that g is an m-ary polymorphism of ∆ translates to a conjunction of some predicates from ∆. Therefore we
can define R as follows:

R(~x)←→ ∃g “g is a polymorphism of ∆” ∧
(
~x = g(~t1, . . . ,~tm)

)
.

Let us illustrate this with ∆ = {Q+, Q−}, where Q+(x) = x and Q−(x) = x̄, and R being the equality
relation R(x, y) = “x = y”. The equality relation has two satisfying assignments, ~t1 = (T, T) and ~t2 = (F, F),
and so m = 2. An m-ary function g is a polymorphism of ∆ if

Q+(g(T, T)) ∧Q−(g(F, F)).

We obtain the following definition of R:

R(x1, x2)←→ ∃g(T, T), g(T, F), g(F, T), g(F, F)

Q+(g(T, T)) ∧Q−(g(F, F)) ∧
(
x1 = g(T, F)

)
∧
(
x2 = g(T, F)

)
.

Concluding, we have proved that Inv(Pol(∆)) = 〈∆〉 for all finite ∆.

It is natural to ask what happens if instead of starting with a set of predicates, we start with a set F of
functions. If R is invariant under all functions in F , then each function in F is a polymorphism of R. In
other words, F ⊆ Pol(Inv(F)). Since Pol(·) contains all projections and is closed under composition, in fact
[F] ⊆ Pol(Inv(F)). Does the converse hold? That is, do all polymorphisms of Inv(F) belong to [F]?

For every k, let [F]k consist of all k-ary functions in [F]. We can think of [F]k as a |D|k-ary predicate
whose variables encode the truth table of the k-ary function. Suppose that g1, . . . , g` ∈ [F]k and g ∈ [F]`. If
we apply g on the truth tables of g1, . . . , g` then we obtain a k-ary function g ◦ (g1, . . . , g`) given by

(g ◦ (g1, . . . , g`))(d1, . . . , dk) = g(g1(d1, . . . , dk), . . . , g`(d1, . . . , dk)).

This is just a composition of functions in F , and so g ◦ (g1, . . . , g`) ∈ [F]k. In other words, [F]k ∈ Inv(F).
Now suppose that g is a k-ary polymorphism Inv(F). In particular, it is a k-ary polymorphism of [F]k. In
particular, if we apply g to the projection functions π1, . . . , πk (recall πi(d1, . . . , dk) = di), we should get
another function in [F]k. This application is

(g ◦ (π1, . . . , πk))(d1, . . . , dk) = g(π1(d1, . . . , dk), . . . , πk(d1, . . . , dk)) = g(d1, . . . , dk).

In other words, it is g itself! Thus every k-ary polymorphism of Inv(F) belongs to [F]k. Since k is arbitrary,
this proves that Pol(Inv(F)) = [F].

Summarizing, we have proved the following identities, the first requiring ∆ to be finite:

� Inv(Pol(∆)) = 〈∆〉.

� Pol(Inv(F)) = [F].

This shows that Pol and Inv are, in a sense, inverses.
We also have two monotonicity properties:

� If Γ ⊆ ∆ then Pol(Γ) ⊇ Pol(∆).

� If F ⊆ G then Inv(F) ⊇ Inv(G).

These properties should remind us of what happens in Galois theory, where Pol corresponds to the
Galois group, and Inv corresponds to the fixed field. For this reason, this kind of connection is called a
Galois correspondence.

13

2.6 Schaefer’s theorem

Here is our general strategy. Given a finite set of predicates Γ, we consider Pol(Γ). If Pol(Γ) is small, then
we want to conclude that CSP(Γ) is NP-hard; and if Pol(Γ) is large, then we want to use it to construct an
efficient algorithm for CSP(Γ).

Suppose that Γ is a finite set of predicates such that Pol(Γ) is the minimal possible clone, consisting only
of projections. Thus Inv(Pol(Γ)) = [Γ] consists of all predicates. In particular, SAT is pp-definable in Γ, and
so CSP(Γ) is NP-hard.

Another hard case which we have seen above is NAE-SAT. In contrast to SAT, NAE-SAT does have
nontrivial polymorphisms: anti-projections πi(x) = ¬xi. If Γ is a finite set of predicates such that Pol(Γ)
consists only of projections and anti-projections, then Inv(Pol(Γ)) = [Γ] consists of all predicates which are
invariant under negation. In particular, NAE-SAT is pp-definable in Γ, and so CSP(Γ) is again NP-hard.

Now suppose that we are given a finite set Γ of predicates which contain a polymorphism g that is neither
a projection nor an anti-projection. We will now attempt to classify all such polymorphisms g, according to
their arity. First, let us dispense with constant g. If g(~x) = b is a polymorphism, then each predicate in Γ
is either empty or satisfied by plugging in b for all variables. Such CSPs are easy to solve.

Now suppose that Γ has no constant polymorphisms, and let g be a polymorphism of minimal arity which
is neither a projection nor an anti-projection. In particular, g depends on all coordinates. If g is binary,
then it is one of the following:

x ∨ y x ∧ y
x ∨ ȳ x ∧ ȳ
x̄ ∨ y x̄ ∧ y
x̄ ∨ ȳ x̄ ∧ ȳ
x⊕ y x⊕ y

In Section 2.2 we have described an algorithm, arc consistency, which can handle predicates invariant
under x ∨ y. Switching 0s and 1s, it can also handle predicates invariant under x ∧ y. Observe now that

x ∨ x̄ = 1 x ∧ x̄ = 0

x̄ ∨ x = 1 x̄ ∧ x = 0

x̄ ∨ x̄ ∨ ȳ ∨ ȳ = x ∨ y x̄ ∧ x̄ ∧ ȳ ∧ ȳ = x ∧ y
x⊕ x = 0 x⊕ x = 1

Hence the remaining cases reduce to one of 0, 1, x ∨ y, x ∧ y.

In order to simplify the analysis of the remaining cases, let us show that we can further assume that
g(a, . . . , a) = a. Indeed, h(a) = g(a, . . . , a) is a polymorphism of Γ, and so by assumption, it is not constant.
Hence either h(a) = a or h(a) = ¬a. In the latter case, the function G(~a) = g(¬~a) is a polymorphism of Γ
of the same arity as g. Moreover, G(a, . . . , a) = g(¬a, . . . ,¬a) = a. Finally, G cannot be a projection, since
if G(~a) = ai then g(~a) = ¬ai would be an anti-projection. Therefore we can replace g with G in order to
satisfy the constraint g(a, . . . , a) = a.

Suppose now that g is ternary and depends on all coordinates. The function g(a, a, b) is a polymorphism
of Γ of smaller arity, and so g must be a projection or an anti-projection. Since g(a, a, a) = a, the function
g(a, a, b) must be a projection: either g(a, a, b) = a or g(a, a, b) = b. Similarly, g(a, b, a) and g(b, a, a) are
projections. Since any input of g contains two identical coordinates, the choices of projections completely
determine g. There are eight different possibilities:

g(a, a, b) a a a a b b b b
g(a, b, a) a a b b a a b b
g(b, a, a) a b a b a b a b

maj π1 π2 ν3 π3 ν2 ν1 min

The first case is majority, handled by the algorithm of Section 2.3. The cases marked πi are projections,
and so cannot occur. The cases marked νi are majority with a single negated input. For example, ν1(x, y, z) =

14

maj(x̄, y, z). To see this, we conside two cases. If x = y = z then ν1(x, y, z) = x = maj(x̄, y, z). Otherwise,
we can write the input as an a, b pattern with b = ā. After flipping the first input, the majority is b, b, a,
matching the column marked ν1. We claim that

maj(x, y, z) = ν1(ν1(x, y, z), y, z).

If y = z then ν1(∗, y, z) = y = maj(x, y, z). If y 6= z then ν1(x, y, z) = x̄, and so ν1(ν1(x, y, z), y, z) =
ν1(x̄, y, z) = x = maj(x, y, z).

The final case, also known as minority, is the operation x ⊕ y ⊕ z (indeed, a ⊕ a ⊕ b = b and so on). It
turns out that in this case, each predicate R ∈ Γ is either empty or an affine subspace, that is, a conjunction
of linear equations over GF (2); consequently, CSP(Γ) can be solved using Gaussian elimination. The proof
is by induction on the arity of R.

If R is nullary then this is clear. Otherwise, let R0(~y) ↔ R(0, ~y) and R1(~y) ↔ R(1, ~y). By induction,
each of R0, R1 is either empty or an affine subspace. If both of R0, R1 are empty then R is empty. If only
R0 is empty then R is the intersection of R1 and the equation x1 = 1. Similarly, if only R1 is empty then R
is the intersection of R0 and the equation x1 = 0.

Now suppose that both R0 and R1 are non-empty, choose ~y0 ∈ R0 and ~y1 ∈ R1, and let ~z = ~y0⊕ ~y1; thus
(0, ~y0), (1, ~y1) ∈ R, and the XOR of these two is (1, ~z). Since R is invariant under a⊕ b⊕ c,

~y ∈ R0 −→ (0, ~y) ∈ R −→ (1, ~y ⊕ ~z) ∈ R −→ ~y ⊕ ~z ∈ R1,

~y ∈ R1 −→ (1, ~y) ∈ R −→ (0, ~y ⊕ ~z) ∈ R −→ ~y ⊕ ~z ∈ R0.

In other words, if R0 is the affine subspace V + ~u, then R1 is the affine subspace V + ~u+ ~z. Therefore R is
the affine subspace V ′ + (0, ~u), where V ′ is the span of (0, V) and (1, ~z).

Finally, suppose that g has arity m ≥ 4 and depends on all coordinates. We will show that this cannot
happen, completing the proof of Schaefer’s theorem.

As shown above, the function g(a1, a1, a3, a3, a5, . . . , am) is a projection ai. Without loss of generality,
i 6= 1. The function g(a1, a1, a3, a4, a5, . . . , am) is also a projection aj . We cannot have j = 1, since if we
identify a3 and a4, we get ai for i 6= 1. Without loss of generality, suppose that j = 4. Identifying a1 and
a3, we see that

g(a1, a1, a1, a4, a5, . . . , am) = a4.

Now consider g(a1, a2, a2, a4, a5, . . . , am). This is a projection ak. If we identify a1 and a2, we get a4, and
so k = 4. Similarly, g(a1, a2, a1, a4, a5, . . . , am) = a4. Thus

g(a, a, b, a4, a5, . . . , am) = a4,

g(a, b, a, a4, a5, . . . , am) = a4,

g(b, a, a, a4, a5, . . . , am) = a4.

Every input to g is captured by one of these three identities, and so g(~a) = a4. That is, g is a projection,
and so doesn’t depend on all coordinates.

Finer classification Schaefer’s theorem shows that every Boolean CSP is either NP-complete or in P.
Allender, Bauland, Immerman, Schnoor, and Vollmer [ABI+09] refined this, by classifying the complexity of
Boolean CSPs up to AC0 reductions. They show that every Boolean CSP is either in coNLOGTIME, or it
is hard with respect to AC0 reductions for one of the following classes: L, NL, ⊕L, P, NP.

Post’s lattice Post [Pos41] classified in 1941 all clones of Boolean functions. There are countably many
cases, which can divided into finitely many families. The resulting poset of clones is a lattice known as
Post’s lattice. Post’s classification can be used to replace the case analysis in the proof of Schaefer’s theorem.
Moreover, it was used by Allender et al. in their finer classification.

The situation for larger alphabets is wilder: there are uncountably many clones. Therefore the proof of
the dichotomy theorem for general finite alphabets uses a case analysis similar to the current proof.

15

Polymorphisms of 3SAT and NAE-3SAT The proof of Schaefer’s theorem shows that 3SAT and
NAE-3SAT cannot have any polymorphisms other than projections and anti-projections, unless P=NP. We
can in fact show it directly, using the completeness properties of these sets of perdicates.

It is well-known that every predicate is pp-definable in 3SAT. Explicitly, a predicate R is pp-definable in
SAT as follows:

R(~x)←→
∧
~b/∈R

“~x 6= ~b”.

The predicate ~x 6= ~b is just a disjunction of “xi 6= bi”. This can be further expressed in 3SAT using extension
variables. The basic idea is to repeatedly use the identity

α ∨ β ←→ ∃z (α ∨ z) ∧ (β ∨ ¬z),

where α, β are arbitrary disjunctions. This allows us to express long clauses using ones of length 3. We can
express shorter clauses using ones of length 3 by duplicating literals.

Since Pol(Inv(∅)) = [∅] and Inv(∅) consists of all relations, we conclude that the only polymorphisms of
the set of all relations are projections. Since every relation is pp-definable in 3SAT, this implies that the
only polymorphisms of 3SAT are projections.

NAE-3SAT does have polymorphisms, namely “anti-projections” πi(x) = ¬xi. We can show that the
projections and the anti-projections are its only polymorphisms by mimicking the proof that we gave above
for 3SAT. If R is a predicate which is invariant under complementation (which we denote by ¬) then

R(~x)←→
∧
~b/∈R

“~x 6= ~b,¬~b”.

This shows that R is pp-definable in NAE-SAT. To express this in NAE-3SAT, we first observe that just as
before, if α, β are sets of literals then

NAE(α, β)←→ ∃zNAE(α, z) ∧NAE(β,¬z).

We leave the easy verification to the reader. This allows us to express long NAE-constraints as ones of
width 3. We can express width 2 NAE as follows:

“x 6= y”←→ ∃zNAE(x, y, z) ∧NAE(x, y,¬z).

Since Pol(Inv(¬)) = [¬], the set of all relations invariant under complementation has only projections
and anti-projections as polymorphisms. Since every such relation is pp-definable in NAE-3SAT, we conclude
that the only polymorphisms of NAE-3SAT are projections and anti-projections.

2.7 Alternative statement

The traditional account of Schaefer’s theorem states that each Boolean CSP is either NP-hard or reduces to
one of the following tractable cases:

1. The constant 0 assignment is always satisfying.

2. The constant 1 assignment is always satisfying.

3. 2SAT, in which each clause contains at most two literals.

4. Horn SAT, in which each clause contains at most one positive literal.

5. Dual-Horn SAT, in which each clause contains at most one negative literal.

6. Linear equations.

16

In our account, the tractable cases corresponded to having the following polymorphisms:

1. Constant 0.

2. Constant 1.

3. Majority.

4. Binary AND.

5. Binary OR.

6. Ternary XOR (Minority).

Items 1 and 2 in both lists clearly correspond, and our proof of tractability of Item 6 showed that
it corresponds to linear equations. It turns out that the remaining items also correspond: a relation is
invariant under Majority iff it is expressible as a 2CNF, and similarly for the other two cases. Since Horn
SAT and Dual-Horn SAT are the same up to negative all variables, it suffices to discuss the cases of 2SAT
and Horn SAT.

2SAT It is easy to check that 2SAT is invariant under majority. Let `1 ∨ `2 be a 2SAT clause. Given
three satisfying assignments, at least two of them satisfy the same literal `i; hence taking their majority will
satisfy the same literal, and so the clause.

Conversely, suppose that R is a relation which is invariant under Majority. Let us show that it is
expressible as a 2CNF (without extension variables!); this will imply that the polymorphisms of 2SAT are
generated by Majority.

We will closely follow the algorithm for CSPs invariant under Majority that we presented in Section 2.3:
we will show by induction that for k ≥ 2, a (k+ 1)-ary relation invariant under Majority can be expressed as
a kCNF. Given such a relation R, the strongest kCNF φ that we can choose consists of the conjunction of
all k-clauses which are implied by R. For example, if no satisfying assignment x = (x1, . . . , xk+1) of R has
x1 = · · · = xk = 0, then φ will include the clause x1 ∨ · · · ∨ xk. In other words, φ states that the restriction
of x to any k coordinates is a partial solution.

By construction, any satisfying assignment of R also satisfies φ. In the other direction, we use an
argument identical to the analysis of the algorithm in Section 2.3. Let y be a truth assignment satisfying φ.
Considering the projections to all variables but x1, x2, x3 in turn, we deduce the existence of the following
three satisfying assignments of R:

∗ y2 y3 y4 . . .
y1 ∗ y3 y4 . . .
y1 y2 ∗ y4 . . .

The asterisks contain values which we have no control over. But whatever those values are, if we take the
majority of all three satisfying assignments, we get back y.

How do we solve 2SAT efficiently? We can think of a 2SAT clause `1 ∨ `2 as stating two statements:

� If `1 is false then `2 must be true.

� If `2 is false then `1 must be true.

Accordingly, we can construct a directed graph whose vertex set consists of all literals, and in which we
include edges ¬`1 → `2 and ¬`2 → `1 for every clause `1 ∨ `2. If this graph contains a directed path from a
literal to its negation, then the 2SAT instance is clearly unsatisfiable. We will show that in any other case,
the instance is satisfiable. The crucial observation is that if we have a path from `1 to `2 then we also have
a path from ¬`2 to ¬`1.

Choose an arbitrary variable x. Either there is no directed path from x to x̄, or there is no directed path
from x̄ to x (or both); suppose the former. We set x, and every literal reachable from x, to true, and remove

17

all falsified literals from the graph. For this to make sense, we need to know that not both y and ȳ can be
reached from x. Indeed, if there were paths from x to y and from x to ȳ then there would be a path from
y to x̄, and so we would obtain a path from x to x̄. Similarly, in the remaining graph there is no path from
any literal ` to x̄, since then there would be a path from x to ¬`, and so we would have set ` to false and
would have consequently removed ` from the graph. Continuing in this fashion for all variables, we obtain
a satisfying assignment.

We will see an alternative algorithm, due to Krom [Kro67], in Section 5.1.

Horn SAT Horn SAT, named after Alfred Horn, arises in logic programming. The Prolog clause

u :- p,q,r.

states that u is true if all of p, q, r are true, which translates to the Horn clause u ∨ p̄ ∨ q̄ ∨ r̄.1
Horn clauses are invariant under AND. Indeed, consider a Horn clause (y1 ∧ · · · ∧ ym) → x. Given two

satisfying assignments, if both of them satisfy y1 ∧ · · · ∧ ym, then both of them also satisfy x. Otherwise,
their conjunction doesn’t satisfy y1 ∧ · · · ∧ ym.

Conversely, suppose that R is a relation which is invariant under AND. We will show that it is expressible
as a Horn CNF (without extension variables!), which will imply that the polymorphisms of Horn SAT are
generated by AND. Incidentally, since

(y1 ∧ · · · ∧ ym)→ x←→ (y1 ∧ z)→ x ∧ (y2 ∧ · · · ∧ ym)→ z,

we conclude that the polymorphisms of Horn 3SAT are already generated by AND.
As in the case of 2SAT, we will show that R is equivalent to the strongest Horn CNF φ implied by R,

that is, the conjunction of all Horn clauses implied by R. By construction, every satisfying assignment of R
satisfies φ. In the other direction, consider any satisfying assignment y of φ, and suppose that it assigns true
to the variables in the set S. For each i /∈ S, the clause xS → xi does not appear in φ (where xS signifies
that all variables in S evaluate to true), and so there is a satisfying assignment of R which sets all variables
in S to true, but sets xi to false. Taking the AND of all these assignments for all i /∈ S, we get y, and so y
satisfies R.

How do we solve Horn SAT efficiently? Let us first observe that if there is no clause of the form x, then
assigning false to all variables satisfies all clauses. Conversely, if there is a clause of the form x, then we must
set x to true, and can then remove all occurrences of x̄ from all remaining clauses. Continuing in this way,
we either find a satisfying assignment, or arrive at a CNF in which one of the clauses is empty, concluding
that the instance is unsatisfiable.

1In Gentzen’s sequent calculus, this will be written p, q, r ` u. More generally, P ` Q means that if all propositions in P
hold then at least one of the propositions in Q holds.

18

3 Approximability: MAX-3LIN

This and the following section follow lecture notes of Prahladh Harsha (Limits of approximation algorithms,
TIFR 2010) and of Ryan O’Donnell (Advanced Approximation Algorithms, CMU 18-854B, Spring 2008).

3.1 Approximation algorithms and inapproximability

Recall that in MAX-3XOR, also known as MAX-3LIN, we are given a bunch of linear equations on three
variables xi⊕xj⊕xk = b, and the goal is to find an assignment which satisfies as many equations as possible.

It is easy to check whether an instance is satisfiable using Gaussian elimination. What can we say when an
instance is unsatisfiable? The Razborov–Smolensky encoding [Raz87, Smo87] relates satisfiability of clauses
to satisfiability of linear equations. Given a 3-clause x ∨ y ∨ z, consider the set of linear equations of the
form αx⊕ βy⊕ γz = 1, where α, β, γ go over all 7 possible values other than (0, 0, 0). If x = y = z = 0 then
all of these linear equations are false, and otherwise exactly 4 of them are true.

We can realize these linear equations in 3LIN by adding N copies of the equation w ⊕ w ⊕ w = 0, for
large enough N , and replacing the constant 0 with w. This allows us to convert a 3CNF on m clauses φ to
a MAX-3LIN instance ψ with 7m + N constraints such that φ is satisfiable iff some assignment satisfies at
least 4m + N constraints of ψ (choosing N = 3m + 1 suffices). Thus the decision version of MAX-3LIN is
NP-hard.

One standard way to cope with NP-hard problems is via approximation algorithms. In this case, we are
looking for a polynomial time algorithm which, given an instance ψ of MAX-3LIN with value O (the value is
the maximum fraction of constraints which can be simultaneously satisfied), produces a satisfying assignment
which satisfies at least c · O of the constraints. The constant c is known as the approximation ratio. We
often allow approximation algorithms to be randomized, and then we either measure the expected value of
the assignment that they produce, or require them to output a good assignment with high probability.

A random assignment satisfies half the constraints in expectation; moreover, we can derandomize this
algorithm to obtain a deterministic algorithm which always satisfies at least half the constraints. Since the
value is always at most 1, this algorithm has approximation ratio 1/2. Can we do better?

If P=NP then we can solve MAX-3LIN exactly (this is a nice exercise). Following H̊astad [H̊as01], we
will show that if P6=NP, then the approximation ratio of 1/2 cannot be improved upon. As in the usual
theory of NP-completeness, we will aim at a many-one reduction from SAT to “approximating MAX-3LIN”.
Here is what this means in practice: for every ε > 0, we will construct a polynomial time reduction that
takes as input a SAT instance φ and outputs a MAX-3LIN instance ψ such that:

� Completeness. If φ is satisfiable then the value of ψ is at least 1− ε.

� Soundness. If φ is not satisfiable then the value of ψ is at most 1/2 + ε.

In other words, the promise version of MAX-3LIN in which the instance is either at least (1− ε)-satisfiable
or at most (1/2 + ε)-satisfiable is NP-hard.

If we had an approximation algorithm for MAX-3LIN with approximation ratio 1/2 + δ then we could
use it to solve SAT as follows. First, we choose a value of ε such that

(1− ε)(1/2 + δ) > 1/2 + ε⇐⇒ 1/2 + ε

1− ε
< 1/2 + δ.

This is possible since as ε → 0, the ratio on the right-hand side tends to 1/2. Given a SAT instance φ, we
reduce it to a MAX-3LIN instance ψ satisfying the properties above. We run the approximation algorithm,
and calculate the value S of the assignment it produces. If S > 1/2 + ε then we known that φ must be
satisfiable. Conversely, if φ is satisfiable then S ≥ (1 − ε)(1/2 + δ) > 1/2 + ε. Thus φ is satisfiable iff
S > 1/2 + ε.

Incidentally, this rules out approximation algorithms that only approximate the value of a MAX-3LIN
instance, rather than produce an actual good assignment. We say that MAX-3LIN is NP-hard to approximate
better than 1/2.

19

Perfect completeness The promise version of MAX-3LIN in which the instance is either satisfiable or
at most (1/2 + ε)-satisfiable is easy: we can decide it using Gaussian elimination. The same cannot be said
about MAX-3SAT.

We can relate the hardness of MAX-3SAT to that of MAX-3LIN by encoding a linear equation x⊕y⊕z = 0
as the corresponding CNF:

(x ∨ y ∨ z̄) ∧ (x ∨ ȳ ∨ z) ∧ (x̄ ∨ y ∨ z) ∧ (x̄ ∨ ȳ ∨ z̄).

If x⊕y⊕z = 0 then the CNF is satisfied, and otherwise exactly one clause is not satisfied. If we compose this
encoding with the reduction from SAT to the promise version of MAX-3LIN, then we get a reduction from
SAT to the promise version of MAX-3SAT with the following features, denoting the input SAT instance by
φ and the output MAX-3SAT instance by χ:

� Completeness. If φ is satisfiable then the value of χ is at least 1− ε.

� Soundness. If φ is not satisfiable then the value of χ is at most (1/2+ ε)+(1/2− ε)(3/4) = 7/8+ ε/4.

This suffices to show that it is NP-hard to approximate MAX-3SAT better than 7/8, which matches the
trivial algorithm which chooses a random assignment, if we assume that each clause mentions three different
variables (an assumption satisfied by the instances produced by our reduction, as it turns out).

We could ask for more: instead of the imperfect completeness appearing in this reduction, we could hope
for perfect completeness, that is, for a reduction in which in the first case, χ is completely satisfiable. Such
a reduction was found by H̊astad [H̊as01]. This shows that it is even hard to distinguish between satisfiable
instances and those which are only marginally satisfiable beyond the random assignment threshold. We
won’t prove this result here.

Exercise Explain how to solve MAX-3LIN exactly using a SAT oracle.

3.2 PCP theorem, label cover, parallel repetition

PCP theorem The hardness results we are interested in concern promise problems in which there is a gap
between Yes instances and No instances. The starting point of all such hardness proofs is the PCP theorem.
There are many ways to state the PCP theorem. Let us start with the perspective of proofs.

Consider a game between two parties: Prover (she/her) and Verifier (he/him). Prover is trying to
convince Verifier that she has a satisfying assignment for some 3CNF φ on n variables and m clauses, known
to both parties. One obvious way to do so is to hand Verifier a satisfying assignment x for φ, which Verifier
can check in polynomial time. What if we want Verifier to run even faster, say in constant time? He could
choose a random clause C of φ, read the three corresponding variables of x, and check that they satisfy C.

If φ is satisfiable and Prover sends Verifier a satisfying assignment, then Verifier’s check will always pass.
When φ is not satisfiable, the best strategy for Prover is to choose an assignment which falsifies as few clauses
as possible, say k. Verifier then catches Prover with probability k/m. The problem with this strategy is that
k could be as small as 1, in which case Verifier only catches Prover with probability 1/m.

The PCP theorem gives an efficiently computable encoding E(φ) of φ, which is another 3CNF satisfying:

� Completeness. If φ is satisfiable, then so is E(φ).

� Soundness. If φ is not satisfiable, then every assignment falsifies a γ-fraction of the clauses of E(φ),
where γ > 0 is some absolute constant.

By running his previous strategy on E(φ), Verifier is able to catch Prover in the unsatisfiable case with
probability γ > 0. He can magnify his success probability by running several rounds of this procedure (more
on that, later).

20

Label Cover Another way to look at this game introduces another Prover, which holds a satisfying
assignment for each clause. Let us call the two provers Clause-Prover and Variable-Prover. Verifier now
chooses a clause C and a variable xi contained in it; queries Clause-Prover for a satisfying assignment y of
C, and Variable-Prover for the value zi of xi; and checks that yi = zi.

If φ is satisfiable, then Variable-Prover can choose a satisfying assignment z, and Clause-Prover can use
the same assignment for her satisfying assignments. In contrast, suppose that any assignment falsifies at
least k clauses of φ. Then whatever assignment z Variable-Prover chooses, there will be at least k clauses
on which Clause-Prover will have to disagree with z, and so Verifier will catch the provers with probability
at least k/3m.

A neat way to look at this new game is via a bipartite graph. The left side consists of the m clauses of
φ, and the right side consists of the n variables of φ. We connect a clause C and a variable xi if C mentions
xi. In the two-prover game, Clause-Prover chooses a 7-coloring of the left side, and Variable-Prover chooses
a 2-coloring of the right side. Verifier then chooses a random edge and checks that the color y(C) of C
matches the color z(xi) of xi. This check can be realized as a function f : {1, . . . , 7} → {0, 1}, which we can
conveniently write on the (C, xi) edge.

The abstract version of this problem is known as Label Cover. For finite sets Σ,∆, an instance of
(Σ,∆)-Label Cover consists of a bipartite graph G = (VL, VR, E), and for each edge e = (vl, vr) ∈ E, a
function fe : Σ → ∆. The goal is to choose a Σ-coloring α of VL and a ∆-coloring β of VR such that
fvl,vr (α(vl)) = β(vr) for as many edges (vl, vr) ∈ E as possible. The value of the instance is the maximum
fraction of constraints that can be satisfied.

Using this language, we can restate the PCP theorem: Given a CNF φ, it constructs in polynomial time
an instance Π of (7, 3)-Label Cover such that:

� Completeness. If φ is satisfiable, then Π is satisfiable (has value 1).

� Soundness. If φ is not satisfiable, then the value of Π is at most 1− δ, for some δ > 0.

In other words, given an instance of (7, 3)-Label Cover, it is NP-hard to distinguish between the following
two cases:

� Π is satisfiable.

� Π has value at most 1− δ.

All proofs of the PCP theorem are difficult, though the new proof of Dinur [Din07] is much shorter than
the original proof [AS98, ALM+98].

Parallel repetition The gap provided by the PCP theorem, 1 versus 1− δ, is a good starting point, but
for our actual hardness result we will need an arbitrarily large gap. The natural way to magnify the gap
is via repetition: Verifier should ask Clause-Prover for several clauses, choose one variable each, and ask
Variable-Prover for the corresponding variables. If Verifier employs t clauses, we would expect the value of
the game to decrease as (1− δ)t. Surprisingly, this is not the case! The provers can sometimes do better.

Exercise Consider the following game, involving two provers and a verifier. Left Prover and Right Prover
each choose a 2-coloring of the vertices 1, 2, 3 of a triangle: Left chooses the colors a1, a2, a3 ∈ {0, 1}, and
Right chooses the colors b1, b2, b3 ∈ {0, 1}. Verifier then chooses some i ∈ {1, 2, 3}, and either checks that
bi = ai, or that bi+1 6= ai.

Model this game as an instance of Label Cover, and compute its value. Then consider what happens
when Verifier asks each prover for the color of two vertices. Model the new game as an instance of Label
Cover, and compute its value.

Raz’s celebrated parallel repetition theorem [Raz98] states that if a game of this sort has value 1 − δ,
then repeating it enough times decreases the value arbitrarily close to zero. Quantitatively, Rao [Rao11]

21

(improving on the parameters obtained by Raz) showed that the value is at most (1 − δ/2)Ω(δt) after t
repetitions. The upshot is that for every ε > 0 we can find alphabets Σ and ∆ (whose size depends on ε)
such that given an instance Π of (Σ,∆)-label cover, it is NP-hard to distinguish between the following two
cases:

� Π is satisfiable.

� Π has value at most ε.

This will be the starting point of our inapproximability result.

3.3 Long code, linearity testing (1)

Fix some small ε > 0, and let Σ,∆ be alphabets such that it is NP-hard to distinguish satisfiable instances
of (Σ,∆)-Label Cover from instances whose value is at most ε. We would like to find a reduction that takes
an instance Π of (Σ,∆)-Label Cover and outputs an instance ψ of MAX-3LIN such that:

� Completeness. If Π is satisfiable then Ψ is almost satisfiable (has value close to 1).

� Soundness. If Π has value at most ε then Ψ has value roughly 1/2.

The obvious idea is to have the variables of Ψ encode colorings of both sides of Π. How should we encode
the color of a vertex v on the left-hand side? Let Σ = {1, . . . , s}. We want to encode each σ ∈ Σ using
some collection y1, . . . , ym of bits. Each yi is some function of σ. Which functions should we choose? There
are only 2s possible functions, which is a constant number, so why not just choose all of them? Here is a
concrete example, with s = 3:

000 001 010 011 100 101 110 111
1 0 0 0 0 1 1 1 1
2 0 0 1 1 0 0 1 1
3 0 1 0 1 0 1 0 1

Here the left column is an element σ ∈ {1, 2, 3}, and the remaining columns consist of all possible functions.
We have suggestively provided indexes on the first row.

Generalizing from this special case, we are encoding each σ ∈ Σ using a function fσ : {0, 1}s → {0, 1}
given by fσ(x1, . . . , xs) = xσ. In other words, fσ is a projection, though in this setting, it usually goes by the
name dictator (betraying the origins of Boolean function analysis in social choice theory). This encoding is
known as the Long Code.

Suppose that our reduction encoded the color of a vertex v on the left-hand side by a function fv : {0, 1}|Σ| →
{0, 1}, whose intended value is fσ, where σ ∈ Σ is the color of v. Our reduction will need to test (implicitly
or explicitly) that fv is indeed a dictator, using the only means available to it: 3LIN constraints. How does
such a test proceed?

Let us start with an easier goal: testing that a given function f : {0, 1}n → {0, 1} is linear, that is, of the
form f(x) =

⊕
i∈S xi. A dictator is a special case of a linear function, so this seems like a good starting point.

Another definition of linear, familiar from linear algebra, is: f(x ⊕ y) = f(x) ⊕ f(y). The two definitions
coincide, and the latter suggests a natural tester:

Choose x, y ∈ {0, 1}n at random, and verify that f(x⊕ y) = f(x)⊕ f(y).

If f is linear, then the test always passes; this is completeness. What about soundness? We cannot say
much if f is close to a linear function. Indeed, if f is ε-close to a linear function, meaning that it results
from a linear function by changing an ε-fraction of the entries, then the test will pass with probability at
least 1− 3ε. Therefore the most we can expect to say is that if the test passes with probability 1− ε, then
f is O(ε)-close to a linear function.

22

It turns out that soundness does hold. There are at least three different proofs of this fact, and we will
see two of them. The first one, which is also the original one, is quite intuitive; it is due to Blum, Luby
and Rubinfeld [BLR93]. The second one uses Fourier analysis, which we cover later on; it is due to Bellare,
Coppersmith, Hast̊ad, Kiwi and Sudan [BCH+96]. A third one, using induction, is due to David, Dinur,
Goldenberg, Kindler and Shinkar [DDG+17], who used their analysis to generalize the test to the case in
which the function gets as input a binary vector of some constant even weight.

Let us therefore assume that f(x⊕y) = f(x)⊕f(y) holds with probability 1−ε, where ε < 2/9. We think
of f as some noisy version of a genuine linear function g. How do we extract g from f? Writing the test as
f(x) = f(y) ⊕ f(x ⊕ y) suggests such a way: taking g(x) to be the majority value of f(y) ⊕ f(x ⊕ y). The
resulting function is close to f : if g(x) 6= f(x) then this means that the probability that f(x) 6= f(y)⊕f(x⊕y)
is at least 1/2, implying that

Pr[f(x) 6= f(y)⊕ f(x⊕ y)] ≥ 1

2
Pr[f(x) 6= g(x)].

Thus Pr[f 6= g] ≤ 2ε.
Miraculously, the function g is linear! In order to show this, we first show that for every x, the value of

f(y)⊕ f(x⊕ y) is significantly skewed towards g(x): namely,

Pr[f(y)⊕ f(x⊕ y) = g(x)] > 2/3.

The idea is to relate this probability to the probability that f(y)⊕ f(x⊕ y) = f(z)⊕ f(x⊕ z). If the former
is p > 1/2 then the latter is p2 + (1 − p)2, which is increasing with p. Therefore it suffices to show that
f(y)⊕ f(x⊕ y) = f(z)⊕ f(x⊕ z) with probability at least 5/9.

Moving things around, it suffices to bound the probability that f(y) ⊕ f(x ⊕ z) = f(z) ⊕ f(x ⊕ y). For
every x, the values y, x⊕ z are uniformly random, and so they equal f(x⊕y⊕ z) with probability more than
1− 2/9. The same can be said about the right-hand side, and so

Pr[f(y) = f(x⊕ z) = f(x⊕ y ⊕ z) = f(z)⊕ f(x⊕ y)] > 1− 2/9− 2/9 = 5/9.

Now we can show that g is linear. The idea is very simple: given x, y, each of the following holds with
probability more than 2/3 over the choice of z:

g(x) = f(z)⊕ f(x⊕ z),
g(y) = f(z)⊕ f(y ⊕ z),

g(x⊕ y) = f(x⊕ z)⊕ f(y ⊕ z).

Hence we can find a value of z for which all of these equations hold. Summing them, we see that g(x⊕ y) =
g(x)⊕ g(y). Since x, y were arbitrary, we conclude that g is linear, completing the analysis.

3.4 Fourier analysis and linearity testing (2)

The analysis of linearity testing that we just saw is very neat, but not as versatile as the next technique that
we demonstrate: Boolean function analysis, which is the same as Fourier analysis on the group Zn2 .

We want to show that if f(x ⊕ y) = f(x) ⊕ f(y) happens with high probability, then f is close to a
linear function. It will be convenient to switch to a different representation of Boolean values, {−1, 1},
since XOR corresponds to multiplication in this representation (if we represent 0 as 1 and 1 as −1). Thus
f : {±1}n → {±1} satisfies f(xy)f(x)f(y) = 1 with high probability.

It is natural to express an arbitrary f as a mixture of linear functions, so we need names for these. For
each S, we have a linear function χS(x) =

∏
i∈S xi, and in this context these are known as Fourier characters.

The fundamental observation is that the Fourier characters form an orthonormal basis for the space of all
functions on {±1}n with respect to the inner product

〈f, g〉 = E
x

[f(x)g(x)] =
1

2n

∑
x∈{±1}n

f(x)g(x).

23

Since x2
S = 1, the Fourier characters have unit norm. To see that they are orthogonal, suppose that S 6= T ,

and choose an arbitrary i ∈ S∆T . Then

〈xS , xT 〉 =
1

2n

∑
x∈{±1}n

∏
j∈S

xj
∏
k∈T

xk =
1

2n

∑
x∈{±1}n

∏
`∈S∆T

x` =
1

2n

∑
xi∈{±1}

xi
∑

x−i∈{±1}n−1

∏
`∈S∆T
` 6=i

x` = 0,

where x−i contains all variables but xi. Finally, the Fourier characters form a basis since there are 2n of
them, matching the dimension of the space of all functions.

Since the Fourier characters form a basis, every function f : {±1}n → R (not necessarily Boolean) has a
unique expansion as a linear combination of Fourier characters, known as its Fourier expansion:

f(x) =
∑
S⊆[n]

f̂(S)χS(x).

The coefficients f̂(S) are called Fourier coefficients.
What does all of this have to do with linearity testing? First, let us notice that if Pr[f(x)f(y)f(xy) =

1] = 1− ε then
E
x,y

[f(x)f(y)f(xy)] = (1− ε)− ε = 1− 2ε.

The idea now is to open each of the copies of f into its Fourier expansion:

1− 2ε = E
x,y

[f(x)f(y)f(xy)] = E
x,y

∑
S

f̂(S)χS(x)
∑
T

f̂(T)χT (y)
∑
U

f̂(U)χU (xy).

Note that χU (xy) = χU (x)χU (y). Rearranging gives

1− 2ε =
∑
S,T,U

f̂(S)f̂(T)f̂(U) E
x,y

[χS(x)χT (y)χU (x)χU (y)] =

∑
S,T,U

f̂(S)f̂(T)f̂(U)E
x

[χS(x)χU (x)]E
y
[χT (y)χU (y)] =

∑
S

f̂(S)3,

using orthonormality at the very last step. Orthonormality also implies that 1 = E[f2] =
∑
S f̂(S)2, known

in this context as Parseval’s identity, and so

1− 2ε =
∑
S

f̂(S)3 ≤
∑
S

f̂(S)2 ·max
T

f̂(T) = max
T

f̂(T).

In other words, some T satisfies f̂(T) ≥ 1− 2ε. Applying orthonormality one last time, we see that

f̂(T) = 〈f, χT 〉 = Pr[f = χT]− Pr[f 6= χT] = 2 Pr[f = χT]− 1.

We conclude that Pr[f = χT] ≥ 1− ε. In other words, f is ε-close to the linear function χT .

3.5 Dictatorship testing and folding

Emboldened by our success with linearity testing, let us move on to our actual goal: dictatorship testing.
Given a function f : {±1}n → {±1}, we want to test whether f is a dictator, that is, of the form f(x) = xi
for some i ∈ {1, . . . , n}.

How do we distinguish dictators from other linear functions? The basic idea is that if we slightly perturb
the input, then a dictator would hardly be affected, whereas a function like parity (the linear function
depending on all coordinates) will essentially reduce to a random function.

Given an input x ∈ {±1}n, we can perturb it into an input y ∈ {±1}n in the following way: yi = x1

with probability 1− δ, and yi = −xi with probability δ. The effect of perturbation on Fourier characters is

24

easy to calculate. If we choose x uniformly at random and perturb it to y by negating each coordinate with
probability δ, then

Pr
x,y

[χS(x) = χS(y)] =
1

2
+

1

2
E
x,y

[χS(x)χS(y)] =
1

2
+

1

2

∏
i∈S

E
xi,yi

[xiyi] =
1

2
+

1

2
(1− 2δ)|S|.

Thus dictators are unaffected with probability 1− δ, whereas parity becomes almost completely random.
We can combine this idea with linearity testing by perturbing one of the three values x, y, xy, say the

last one. One way to accomplish this is as follows: we choose x, y uniformly at random, let zi = 1 with
probability 1− δ and zi = −1 with probability δ, and check that f(xyz)f(x)f(y) = 1. This is known as the
dictatorship test or long code test.

Dictators no longer pass this test with probability 1: the probability is reduced to 1 − δ. That is, we
lose perfect completeness. What about soundness? What can we say if Pr[f(x)f(y)f(xyz) = 1] ≥ 1− ε? As
before, this implies that

1− 2ε = E
x,y,z

[f(x)f(y)f(xyz)]

=
∑
S,T,U

f̂(S)f̂(T)f̂(U) E
x,y,z

[χS(x)χT (y)χU (xyz)]

=
∑
S,T,U

f̂(S)f̂(T)f̂(U)E
x

[χS(x)χU (x)]E
y
[χT (y)χU (y)]E

z
[χU (z)]

=
∑
S

f̂(S)3(1− 2δ)|S|.

As before, this implies that
1− 2ε ≤ max

S
f̂(S)(1− 2δ)|S|.

In particular, f̂(S) ≥ 1− 2ε, and so as before, Pr[f = χS] ≥ 1− ε. But we can say more: we also have

(1− 2δ)|S| ≥ 1− 2ε,

and so S is small.
Looking ahead, in our reduction to MAX-3LIN, the No case will involve instances whose value is close to

1/2. This suggests that when analyzing the soundness of the dictator test, we should check what happens
when the test succeeds with probability 1/2 + η. Substituting ε := 1/2 − η gives us a set S satisfying the
following properties:

� f̂(S) = E[fχS] ≥ 1− 2ε = 2η.

� Pr[f = χS] ≥ 1− ε = 1/2 + η.

� (1− 2δ)|S| ≥ 1− 2ε = 2η, and so

|S| ≤ log(2η)

log(1− 2δ)
= O

(
1

δ
log

1

η

)
.

How should we think of this kind of promise? It allows us to decode any function f which passes the
dictatorship test with probability better than 1/2 into a small set S of variables. This is somewhat similar
to the concept of list decoding. In our context, the function f is supposed to encode a color σ ∈ Σ of some
vertex. We can think of S as a small list of such assignments which somehow arises from f . We will see
below how such lists are useful. Roughly speaking, we will choose a color σ ∈ S at random, and show that
when doing so for all vertices in parallel, in expectation this produces a non-trivial coloring.

25

Folding Before proceeding any further, we should take note of one troubling phenomenon: while dictators
don’t pass the dictator test with probability 1, another function does, namely the constant 1 function, which
corresponds to χ∅. This is a problem since our decoding procedure would produce S = ∅ as the small list of
suggestions for coloring the vertex encoded by f . We would like to rule out empty S.

One way to rule out the constant 1 function is to force the function f to be odd, that is to satisfy
f(−x) = −f(x) for all x, using folding. This is helpful, since dictators are odd whereas the constant function
isn’t. The way to enforce this constraint is very simple: we only specify the values of f on inputs in which
x1 = 1, and define f on the rest of the inputs using f(x) = −f(−x) (the choice of x1 is arbitrary).

We can analyze the test much as before, by treating f as an arbitrary odd function. Dictators still pass
the test with probability 1 − δ. In the soundness analysis, we can say something more about the set S: it
contains an odd number of elements, and so in particular, is not empty. Indeed, if f is an odd function and
S contains an even number of elements then χS(−x) = (−1)|S|χS(x) = χS(x), and so

f̂(S) = E
x

[f(x)χS(x)] = E
x

[f(−x)χS(−x)] = −E
x

[f(x)χS(x)] = −f̂(S).

This implies that f̂(S) = 0, and in particular it is not the case that f̂(S) ≥ 2η.

3.6 Hardness for MAX-3LIN

We are now in a position to construct a reduction from Label Cover to MAX-3LIN. Our starting point is an
instance Π = (U, V,E, {πe}) of (Σ,∆)-Label Cover which is either satisfiable or at most γ-satisfiable, that
is, at most a γ-fraction of constraints can be simultaneously satisfied. Here πe : Σ → ∆ are the constraints
(renamed from fe to avoid collision with the long code encoding), and γ is a parameter of our choosing
which determines the sizes of Σ and ∆. Our goal is to output an instance Ψ of MAX-3LIN with the following
properties:

� Completeness. If Π is satisfiable then Ψ has value at least 1− ε.

� Soundness. If Π is at most γ-satisfiable then Ψ has value at most 1/2 + ε.

Here ε > 0 is a parameter given to us, and we can choose γ depending on ε.
Following the suggestions in the preceding sections, we will encode the color of each vertex in U by an

odd function fu : {±1}Σ → {±1}, which we store as a collection of 2|Σ|−1 Boolean variables. Similarly, we
encode the color of each vertex in V by an odd function fv : {±1}∆ → {±1}, stored as a collection of 2|∆|−1

Boolean variables.
The intention is for each fu and fv to be a dictator. As we saw above, this can be enforced, to some extent,

by checking that f(x)f(y)f(xyz) = 1 for each f , random x, y, and random z chosen so that Pr[zi = 1] = 1−δ
for each i. Incidentally, dictators pass this test only with probability 1 − δ, which is why the MAX-3LIN
instance Ψ will not be satisfiable even when Π is.

Apart from checking that fu and fv are dictators for every u, v, we also want to check that the constraints
πe hold. Our strategy will be to choose an edge (u, v) at random, and check somehow that the dictators
fu, fv agree with πuv.

Suppose that fu, fv were indeed dictators satisfying πuv. Then fu(x) = xσ for some σ ∈ Σ, fv(y) = yτ
for some τ ∈ ∆, and πuv(σ) = δ. We can therefore express fv using fu and πuv as follows, where we assume
that Σ = {1, . . . , s} and ∆ = {1, . . . , t}:

fv(y1, . . . , yt) = fu(yπuv(1), . . . , yπuv(s)).

Indeed,
fu(yπuv(1), . . . , yπuv(s)) = yπuv(σ) = yτ = fv(y).

Denoting the input to the left-hand side by y ◦πuv, we can write this succinctly as fu(y ◦πuv) = fv(y). This
gives us a way to convert vectors in {±1}∆ to corresponding vectors in {±1}Σ.

26

Our test will start by querying fu(x) at a random x ∈ {±1}Σ and fv(y) at a random y ∈ {±1}∆. The
only sensible thing to do now is to convert y into a vector in {±1}Σ by composing with πuv. Now we have
two vectors x, y ◦ πuv ∈ {±1}Σ, and so we are led to the following test:

� Choose a random edge (u, v) ∈ E.

� Choose x ∈ {±1}Σ and y ∈ {±1}∆ at random.

� Choose z ∈ {±1}Σ at random in a biased manner: zi = 1 with probability 1− δ.

� Check whether fu(x)fv(y)fu(x(y ◦ πuv)z) = 1.

Our check, translated back to {0, 1} variables, is of the form p ⊕ q ⊕ r = b, where p, q, r are Boolean
variables (part of the encodings of fu, fv), and b is a constant. Although in the test as stated b is always
equal to zero, when we undo the folding we get arbitrary b.

Our test is a probability distribution over equations of the form p ⊕ q ⊕ r = b. This is not quite an
instance of MAX-3LIN: an instance is a list of equations rather than a distribution. However, this is not a
big difference. Assuming that δ is a rational constant (depending on ε), we can find an integer N , whose size
is polynomial in that of Π, such that the probability that each equation p ⊕ q ⊕ r = b gets chosen is of the
form M/N . We can express this by repeating the equation M times. The fraction of constraints satisfied by
some truth assignment is then the same as the probability that the assignment satisfies a random constraint.
(If we want to reduce the size of the instance, we can round M/N into a rational with smaller denominator;
this only affects the results by a little bit.)

Analysis of the reduction It remains to prove that our reduction works. One direction, completeness,
is easy: suppose that Π is satisfiable, say given by the coloring c. We set fu(x) = xc(u) and fv(y) = yc(v).
We can do this since dictators are odd functions. Then

fu(x)fv(y)fu(x(y ◦ πuv)z) = xc(u) · yc(v) · xc(u)yπuv(c(u))zc(u) = zc(u),

since πuv(c(u)) = c(v). Hence the test passes with probability 1− δ. This means that completeness holds as
long as we choose δ ≤ ε.

The difficult direction is proving soundness. Here we follow the analysis of the dictatorship test, and see
where it leads us. We will assume that

Pr
(u,v)∈E
x,y,z

[fu(x)fv(y)fu(x(y ◦ πuv)z) = 1] >
1

2
+ ε,

and will attempt to deduce that the value of the Label Cover instance Π is more than γ.
Our assumption states that on average, the modified dictatorship test passes with probability more than

1/2 + ε. Hence on a typical edge, it passes with probability more than 1/2 + ε. Let us say that an edge is
good if the test passes with probability at least 1/2 + ε/2. At least an ε/2-fraction of edges are good, since
otherwise the average success probability of the test would be smaller than

ε

2
· 1 +

(
1− ε

2

)(1

2
+
ε

2

)
<
ε

2
+

(
1

2
+
ε

2

)
=

1

2
+ ε.

(This sort of calculation is known as an averaging argument.) From now on, when constructing a satisfying
assignment for Π, we will focus on good edges.

If an edge (u, v) is good then

E
x,y,z

[fu(x)fv(y)fu(x(y ◦ πuv)z)] ≥
(

1

2
+
ε

2

)
−
(

1

2
− ε

2

)
= ε.

27

Following the analysis of the dictatorship test, we expand the left-hand side using the Fourier expansion of
all functions involved:

ε ≤
∑
S,T,U

f̂u(S)f̂v(T)f̂v(U) E
x,y,z

[χS(x)χT (y)χU (x(y ◦ πuv)z)]

=
∑
S,T,U

f̂u(S)f̂v(T)f̂v(U)E
x

[χS(x)χU (x)]E
y
[χT (y)χU (y ◦ πuv)]E

z
[χU (z)].

The first expectation equals 1 when S = U , and vanishes otherwise. The second expectation equals 1 if T is
the set of values appearing an odd number of times in (πuv(σ))σ∈U , and vanishes otherwise; we denote this
set by π2

uv(U). Finally, since Pr[zi = 1] = 1− δ, the third expectation is (1− 2δ)|U |. In total, we get∑
S⊆[Σ]

(1− 2δ)|S|f̂u(S)2f̂v(π
2
uv(S)) ≥ ε. (1)

At this point, we could apply the analysis of the dictatorship test, concluding that

max
S⊆[Σ]

(1− 2δ)|S|f̂v(π
2
uv(S)) ≥ ε,

using Parseval’s identity on fu. We conclude that there is a small set S such that f̂v(π
2
uv(S)) is large. A

reasonable choice of a color for v is a random element of π2
uv(S). There are several issues with the idea. First,

π2
uv(S) could be empty. Second, there could be different choices of π2

uv(S) arising from different choices of
edges. Third, it is not so clear how to choose a color for u given this information.

Instead, let us make the following observation: since fu is Boolean, we can think of f̂u(S)2 as specifying
a probability distribution on subsets of [Σ], known as the spectral sample. The inequality above implies in
particular that ∑

S⊆[Σ]

(1− 2δ)|S|f̂u(S)2 ≥ ε,

and so the spectral sample is concentrated on small sets. This gives us a way of sampling a color for u which
does not involve any specific edge: choose a set S according to the spectral sample of fu, and then choose a
random element c(u) ∈ S, using the fact that S is non-empty since fu is odd. It is natural to choose a color
for v in precisely the same way: choose a set T according to the spectral sample of fv, and then choose a
random element c(v) ∈ T .

What is the probability that this choice satisfies the constraint πuv? If T = π2
uv(S) then c(v) = πuv(c(u))

with probability at least 1/|S|, since given the choice of c(v), there is at least one element in S which maps
to c(v) under πuv. Therefore the probability that πuv(c(u)) = c(v) is at least∑

S

1

|S|
f̂u(S)2f̂v(π

2
uv(S))2. (2)

We would like to relate this to inequality (1). The obvious thing to try is to apply the Cauchy–Schwarz

inequality, splitting f̂u(S)2 into two factors:

ε ≤
∑
S

f̂u(S) · (1− 2δ)|S|f̂u(S)f̂v(π
2
uv(S)) ≤

√∑
S

f̂u(S)2

√∑
S

(1− 2δ)2|S|f̂u(S)2f̂v(π2
uv(S))2

≤
√∑

S

(1− 2δ)2|S|f̂u(S)2f̂v(π2
uv(S))2.

This is almost in the form we want. The only difference is that (2) contains 1/|S| rather than (1 − 2δ)2|S|.
Since (1− 2δ)2|S| decreases much faster than 1/|S|, we can bound the former by the latter:

(1− 2δ)2|S|

1
|S|

≤ |S|e−4δ|S| =
1

4δ
· 4δ|S|e−4δ|S| ≤ 1

4eδ
,

28

since xe−x ≤ e−1 for x ≥ 0. In total, this shows that for every good constraint,

Pr[c(v) = πuv(c(u))] ≥ 4eδ
∑
S

(1− 2δ)2|S|f̂u(S)2f̂v(π
2
uv(S))2 ≥ 4eδε2.

Recalling that the fraction of good constraints is at least ε/2, this shows that a random assignment of colors
satisfies a 2eδε3 fraction of constraints. Hence soundness is satisfied as long as 2eδε3 > γ.

Recap We want to show that it is NP-hard to distinguish instances of MAX-3LIN with value at least 1− ε
from those with value at most 1/2+ ε, for arbitrary ε > 0. We do this by reduction from Label Cover. Given
ε, we choose a parameter γ > 0, depending only on ε (we make an explicit choice below). Applying the PCP
theorem together with parallel repetition, we get that for some alphabets Σ,∆ depending only on γ, it is
NP-hard to distinguish between the following two cases, given an instance Π of (Σ,∆)-Label Cover:

� Completeness. Π is satisfiable.

� Soundness. Π has value at most γ.

We reduced Π to an instance Ψ of MAX-3LIN with the following properties:

� Completeness. If Π is satisfiable, then Ψ has value 1− δ.

� Soundness. If Ψ has value more than 1/2 + ε then Π has value at least 2eδε3.

Let us now choose δ = ε and γ = 5ε4 < 2eε4. If Π is satisfiable then Ψ has value 1 − ε, and if Π has value
at most γ then Ψ has value at most 1/2 + ε. We conclude that it is NP-hard to distinguish instances of
MAX-3LIN with value at least 1− ε from those with value at most 1/2 + ε.

3.6.1 Variant

Here is a slight variant of the soundness proof. We assume that

Pr
{u,v}∈E
x,y,z

[fu(x)fv(y)fu(x(y ◦ πuv)z) = 1] >
1

2
+ ε,

or equivalently,
E

{u,v}∈E
x,y,z

[fu(x)fv(y)fu(x(y ◦ πuv)z)] > 2ε.

Instead of considering only good edges, we consider all edges. Let

εuv = E
x,y,z

[fu(x)fv(y)fu(x(y ◦ πuv)z)], E
{u,v}∈E

[εuv] > 2ε.

As in the original analysis,

ε2uv =

 ∑
S⊆[Σ]

(1− 2δ)|S|f̂u(S)2f̂v(π
2
uv(S))

2

≤
∑
S⊆[Σ]

(1− 2δ)2|S|f̂u(S)2f̂v(π
2
uv(S))2

≤ 1

4eδ
Pr[c(v) = πuv(c(u))],

where c(u) is chosen by sampling S ⊆ [Σ] with probability f̂u(S)2 and then a random element of S (note
S 6= ∅ since fu is odd), and c(v) is chosen in the same way. The expected value of this random coloring is

E
(u,v)∈E

[
Pr[c(v) = πuv(c(u))

]
≥ 4eδ E

(u,v)∈E
[ε2uv] ≥ 4eδ E

{u,v}∈E
[εuv]

2 > 16eδε2,

which is better than the bound 2eδε3 obtained above. We can now complete the proof as before.

29

4 Approximability: MAX-CUT

MAX-CUT is the following fundamental problem: partition the vertices of an undirected graph into two
parts, maximizing the number of edges crossing the cut. It will be convenient to allow non-negative weights
on the edges. An instance of MAX-CUT is then specified by a triple G = (V,E,w), where w : E → R≥0.

We can view MAX-CUT as a CSP with a binary variable xv for each vertex v ∈ V . The value of xv
encodes which of the two parts of V the vertex v belongs to. An edge {u, v} is cut if xu 6= xv. Therefore
MAX-CUT is just an optimization version of CSP(6=). Allowing edges to be weighted corresponds to allowing
constraints to be weighted. This doesn’t affect the complexity of the problem by much, since we can duplicate
constraints in proportion to their weight.

4.1 Goemans–Williamson algorithm for MAX-CUT

Karp [Kar72] showed in his classic 1972 paper that the decision version of MAX-CUT is NP-complete. In this
section we describe an approximation algorithm due to Goemans and Williamson [GW95], which introduced
semidefinite programming into the world of approximation algorithms.

Our starting point is an integer program for MAX-CUT. Recall that we have a Boolean variable xv for
each vertex. It will be convenient to have it range over the two values 1,−1. An edge {u, v} of weight wuv is
cut if xu 6= xv. We can express the corresponding indicator variable as (1−xuxv)/2. We reach the following
integer program, whose optimal value is exactly the maximum weight of a cut in the graph:

max
∑

{u,v}∈E

wuv
1− xuxv

2

s.t. x2
v = 1 for all v ∈ V

Integer programs are hard to solve in general: we can easily encode SAT using them. When the objective
function is linear in the variables, it is natural to relax the integer program into a linear program. Here,
however, the objective function is quadratic in the variables, so instead we relax it into a semidefinite program.
The idea is to replace each variable by a vector of arbitrary dimension:

max
∑

{u,v}∈E

wuv
1− 〈xu, xv〉

2

s.t. ‖xv‖2 = 1 for all v ∈ V

In fact, without loss of generality we can assume that the vectors reside in Rn, since given n vectors in
Euclidean space we can always project them into an n-dimensional subspace in a way which preserves inner
products (in fact, n− 1 dimensions suffice).

This “vector program” is a relaxation of the original integer program, in the sense that its optimal value
can only be larger. The reason is that any solution to the integer program translates to a solution of the
vector program: we just map ±1 to ±e, where e is some arbitrary unit vector.

At this point it is not clear whether we’ve made any progress: are vector programs any easier to solve than
integer programs? It turns out that they can be solved efficiently (up to an arbitrarily small approximation
error). The first step is to get rid of the vectors. Consider the symmetric matrix Muv = 〈xu, xv〉 of all inner
products. This matrix is positive semidefinite (PSD): for any vector z ∈ RV ,

zTMz =
∑
u,v∈V

zuzv〈xu, xv〉 =
∑
u,v∈V

〈zuxu, zvxv〉 =

∥∥∥∥∥∑
v

zvxv

∥∥∥∥∥
2

≥ 0.

Conversely, given an arbitrary (symmetric) PSD matrix M , we can find a Cholesky decomposition M = XXT

which gives us vectors xv (the rows of X) satisfying Muv = 〈xu, xv〉. Therefore the vector program is

30

equivalent to the semidefinite program

max
∑

{u,v}∈E

wuv
1−Muv

2

s.t. Mvv = 1 for all v ∈ V
M � 0

Here M � 0 states that M is PSD (which includes being symmetric).
A program whose objective function is linear and whose constraints are either linear inequalities or of

the form “M � 0” is known as a semidefinite program (SDP). It turns out that semidefinite programs can
be solved efficiently, using either the ellipsoid algorithm or various interior-point methods; we won’t describe
any of these algorithms here.

Rounding Suppose we solved the MAX-CUT semidefinite program, obtaining a vector solution xv via
Cholesky decomposition. How do we translate it into a cut, a process known as rounding? If the vectors
were one-dimensional (which is the case for linear programming relaxations), then the natural course of
action is to put negative values on one side, and positive values on the other side. Here, however, we have
vectors, so we first have to project them into a single dimension.

Given one set of vectors satisfying Muv = 〈xu, xv〉, we can find another set of solutions by rotating the
vectors, that is, replacing xv by Uxv, where U is an arbitrary unitary matrix; this is because 〈Uxu, Uxv〉 =
〈xu, xv〉. Therefore the vectors xv should be thought of as defined only up to an arbitrary rotation. This
suggests the following simple algorithm for projecting the vectors into one dimension: rotate the vectors
using a random rotation, and project into the first argument.

Denoting the random rotation by U , this projects xv into (Uxv)1 = 〈z, xv〉, where z is the first row of U ,
which is just a random vector on the unit sphere. We call z a random direction. We can compute a random
direction by sampling independent unit Gaussians z1, . . . , zn, and normalizing the resulting vector so that it
has unit norm; in fact, in our case we can skip the normalization step, since it doesn’t affect the result. The
entire rounding process is known as random hyperplane rounding, where the hyperplane is {x : 〈z, x〉 = 0}.
The hyperplane partitions the space into two parts, and we partition V according to which part the vectors
xv belong to.

How good is this solution? It suffices to calculate the probability that an edge {u, v} is cut, and compare

this probability to its contribution to the objective function, which is 1−〈xu,xv〉
2 . To this end, we can project

xu and xv orthogonally to some two-dimensional plane, and rotate them so that xu = (1, 0) and xv =
(cos θ, sin θ); thus 〈xu, xv〉 = cos θ. The situation then looks as in Figure 1.

If xu = xv (and so θ = 0), then 〈z, xu〉 and 〈z, xv〉 always have the same sign. If xu = −xv, then 〈z, xu〉
and 〈z, xv〉 always have opposite signs. (In both cases, we ignore the possibility that the inner product is zero,
since this happens with probability zero.) In between, the probability varies linearly with θ, as explained in
Figure 1. Therefore the edge {u, v} is cut with probability |θ|/π.

Sometimes |θ|/π is larger than (1 − cos θ)/2, and sometimes it is smaller; see Figure 2. We can always
say that

θ

π
≥ αGW

1− cos θ

2
, where αGW = min

0≤θ≤π

2

π

θ

1− cos θ
.

We can compute numerically that θGW ≈ 2.33 and αGW ≈ 0.878. It follows that the expected weight of
edges cut by our rounding procedure is∑

{u,v}∈E

wuv
cos−1Muv

π
≥ αGW

∑
{u,v}

wuv
1−Muv

2
.

Since our SDP is a relaxation, the expression on the right is at least αGW times the value of the maximum
cut in the graph. In other words, this algorithm produces an αGW -approximation.

31

(1, 0)
(cos θ, sin θ)

θ

θ

θ

Figure 1: A vector z corresponds to a point on the unit circle. The red region is where 〈z, xu〉 is positive,
the blue region is where 〈z, xv〉 is positive, the purple region is where they have different signs.

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

θ

1−cos θ
2
θ
π

Figure 2: Probability that edge is cut (blue) compared to its contribution to the objective value (red) as a
function of the angle.

32

Before discussing the algorithm any further, let us mention a further issue: the algorithm, as currently
described, is randomized. It turns out that it can be derandomized using the method of conditional ex-
pectations. Since we cannot go over all possible values of each coordinate of each xv, this also involves a
quantization step. The details were worked out by Mahajan and Ramesh [MR99].

4.2 Algorithmic gap

Our analysis shows that the Goemans–Williamson has an approximation ratio of at least αGW ≈ 0.878. Is
the analysis tight? Can the rounding procedure be improved? Is there a better approximation algorithm
possible? We tackle these questions one by one, starting with the tightness of the analysis. We will describe
work due to Karloff [Kar99] and Alon–Sudakov [AS00].

Let ρGW = cos θGW ≈ −0.689. In order for the analysis to be tight, we need to find an instance whose
optimal solution xv satisfies 〈xu, xv〉 ≈ ρGW for all edges. With hindsight, we will construct such a graph on
the vertex set {±1}n, for large n; this will enable us to employ techniques from Boolean function analysis.
We will attempt to find an instance in which an optimal solution to the SDP is xv = v/‖v‖ = v/

√
n for all

v ∈ {±1}n.
In order to facilitate the analysis, we will construct the instance by specifying a probability distribution on

edges which is a product distribution, that is, an edge (u, v) is sampled by sampling the coordinates (ui, vi)
independently, and the weight of an edge is its probability. Experience from Boolean function analysis
suggests that product distributions are easier to analyze, due to the product nature of the Fourier basis.
Furthermore, it is natural to ask for the marginals to be uniform, that is, u by itself is uniform, and v by
itself is uniform.

Recall that we aim for 〈xu, xv〉 to be close to ρGW . Together with the assumption that the coordinates
(ui, vi) are identically distributed, this essentially determines the distribution of edges. Since 〈xu, xv〉 =
〈u, v〉/n, we would like E[〈u, v〉] = ρGWn. On the other hand, E[〈u, v〉] = E[u1v1]n, and so we need E[u1v1] =
ρGW . Moreover, in order for the marginals to be uniform, we need E[u1] = E[v1] = 0. There is a unique
distribution on pairs of bits which satisfies these constraints: sample u1 ∈ {±1} uniformly, and let v1 = u1

with probability (1 + ρGW)/2, and v1 = −u1 with probability (1− ρGW)/2.
If the vectors xv are an optimal solution to the SDP, then we get what we want: due to the central

limit theorem, 〈xu, xv〉 is concentrated on ρGW , and so the rounding procedure will lose a factor of αGW . It
remains to show that the vectors xv are an optimal solution.

Let fv be an arbitrary solution to the SDP. We can think of f as a function from {±1}n to RN , where
N is the dimension of the vectors. Accordingly, we will write f(v) for the vector chosen for v. We want
to show that the assignment xv maximizes Eu,v[(1 − 〈f(u), f(v)〉)/2], or equivalently, that it minimizes
Eu,v[〈f(u), f(v)〉], a quantity which is equal to ρGW when f(u) = xu.

We will analyze the projection of f to each of its coordinates. The contribution of coordinate i to
Eu,v[〈f(u), f(v)〉] is

E
u,v

[fi(u)fi(v)] =
∑
S,T

f̂i(S)f̂i(T) E
u,v

[χS(u)χT (v)].

We can write v = uw, where each coordinate of w equals 1 with probability (1 + ρGW)/2 and −1 with

33

probability (1− ρGW)/2. Thus

E
u,v

[fi(u)fi(v)] =
∑
S,T

f̂i(S)f̂i(T) E
u,w

[χS(u)χT (uw)]

=
∑
S,T

f̂i(S)f̂i(T)E
u

[χS(u)χT (u)]E
w

[χT (w)]

=
∑
S

ρ
|S|
GW f̂i(S)2

≥ ρGW
∑
S

f̂i(S)2

= ρGW E
v
[fi(v)2],

using ρGW ≈ −0.689 ∈ (−1, 0). Combining the contribution of all coordinates, we get

E
u,v

[〈f(u), f(v)〉] =
∑
i

E
u,v

[fi(u)fi(v)] ≥ ρGW
∑
i

E
v
[fi(v)2] = ρGW E

v
[‖f(v)‖2] = ρGW ,

since f(v) is a unit vector for all v ∈ {±1}N . Thus f(v) = xv is indeed an optimal solution to the SDP.

What is the optimal value of this instance? Our calculation above shows that any cut f : {±1}n → {±1}
satisfies

E
u,v

[f(u)f(v)] ≥ ρGW ,

with equality if all the Fourier mass of f lies on Fourier coefficients of size 1, that is, f is of the form

f(x1, . . . , xn) =

n∑
i=1

f̂({i})xi.

The dictator functions f = ±xi are of this form; indeed, these are the unique Boolean functions of this form.
In other words, if we partition the vertices into two parts according to the first coordinate, then we get a cut
whose value is (1−ρGW)/2, and this value is optimal; moreover, cuts of this form are the unique optimizers.
Thus in this instance, the value of the SDP is the same as the value of the original integer program.

4.3 Integrality gap

So far we have seen that our analysis of random hyperplane rounding is tight. But perhaps there is a
better rounding procedure? One way to rule this out is via the following observation: analyses of rounding
procedures tend to prove bounds of the form ALG ≥ αSDP , where ALG is the expected value of the
solution produced by the algorithm, and SDP is the value of the SDP. Combined with the trivial observation
SDP ≥ OPT , where OPT is the integer optimum, this shows that the algorithm is an α-approximation.

Since OPT ≥ ALG , an analysis of this form guarantees that OPT ≥ αSDP . Therefore, if we construct an
instance satisfying OPT = βSDP , then no analysis of this form can prove an approximation ratio better than
β. Such an instance is known as an integrality gap instance, since there is a gap between the integer solution
OPT and its fractional relaxation SDP . (While we have described integrality gaps for SDP relaxations, they
are also used to analyze LP relaxations.)

This suggests looking for an instance of MAX-CUT satisfying OPT ≈ αGWSDP , following the footsteps
of Feige and Schechtman [FS02]. Since ALG ≥ αGWSDP ≈ OPT , in such an instance the Goemans–
Williamson algorithm actually constructs a near-optimal solution. Moreover, the rounding procedure needs
to lose a factor of αGW , and so again we are looking for a solution satisfying 〈xu, xv〉 ≈ ρGW for all edges
(u, v).

In order to compute the value of the SDP, we would like to arrange, just as before, that xv be an optimal
solution for the SDP. However, this time there will be no need to prove that it is optimal. Rather, denoting

34

its objective value by OBJ , it will suffice to show that αGWOBJ ≈ OPT , since αGWSDP ≤ ALG ≤ OPT ≈
αGWOBJ will imply that SDP . OBJ and so SDP ≈ OBJ .

For the algorithmic gap, we chose as our graph the Boolean cube. This time, we make an even more
obvious choice: our graph will consist of a high-dimensional unit sphere! While this is an infinite graph, it can
be rounded to a finite one, a step that we skip. We will identify points on the sphere with the corresponding
vectors. Once again, it is natural to ask for a probability distribution on pairs of points whose marginals are
uniform, and moreover, the inner product is concentrated around ρGW .

As a stepping stone toward constructing such a distribution, let us start with constructing a uniformly
random point on the (d− 1)-dimensional unit sphere Sd−1 (which is the subset of Rd consisting of vectors of
unit norm). The standard technique is to sample a d-dimensional vector x whose coordinates are iid standard
Gaussians, and normalize it. This works due to the invariance of the distribution of x under rotation.

Given two such vectors x, y, if we want 〈x/‖x‖, y/‖y‖〉 ≈ ρGW , it seems like a good idea to require
E[xiyi] = ρGW ; such a pair of Gaussians is said to be ρGW -correlated. There is a unique bivariate Gaussian
distribution with this property. One way to sample it is to sample xi, zi ∼ N(0, 1) and to take yi =

ρxi +
√

1− ρ2zi. Since ‖x‖, ‖y‖ are tightly concentrated around
√
d (for large d), this will indeed ensure

that 〈x/‖x‖, y/‖y‖〉 ≈ ρGW .
Our instance is thus obtained by sampling d-dimensional ρ-correlated Gaussians x, y, and outputting the

edge (x/‖x‖, y/‖y‖). The objective value OBJ of the assignment in which each vector is mapped to itself is
roughly (1− ρGW)/2. In order to determine OPT , let us observe that each partition of the sphere into two
parts translates to a corresponding partition of d-dimensional Gaussian space Rd into two parts: x ∈ Rd is
put in the same part as x/‖x‖ ∈ Sd−1. We can thus bound OPT by the maximum of

Pr
x,y

[f(x) 6= f(y)],

where x, y are ρ-correlated Gaussians and f : {±1}d → {±1}.
Recall that our instance will need to be such that the rounding procedure yields an almost optimal

solution. What does the rounding procedure do to our solution, which is the uniform distribution on the
sphere? It rotates it at random, which has no effect, and then calculates the sign of the first coordinate.
When pulling this back to Gaussian space, this corresponds to calculating the sign of x1, that is, the solution
f(x) = sgnx1.

What is Pr[sgnx1 6= sgn y1]? Recall that y1 = ρGWx1 +
√

1− ρGW z1, where z1 ∼ N(0, 1). Since
ρGW = cos θGW , we can write this as follows:

x1 = 〈(1, 0), (x1, z1)〉, y1 = 〈(cos θGW , sin θGW), (x1, z1)〉.

Since we are interested only in the signs of x1 and y1, we can normalize (x1, z1) by its norm to obtain a
random direction v. Once we do this, sgnx1 and sgn y1 are simply the result of applying random hyperplane
rounding to (1, 0) and (cos θGW , sin θGW)! Thus Pr[sgnx1 6= sgn y1] = θGW /π.

Borell’s isoperimetric theorem [STs74, Bor75] states (in a special case) that f(x) = sgnx1 maximizes
Pr[f(x) 6= f(y)], where x, y are ρGW -correlated Gaussians (Borell’s theorem applies for arbitrary ρ; when
ρ > 0, random hyperplane rounding minimizes the stated probability). Borell’s theorem can be proved in
many ways, some of them quite elementary; but will we just accept it on faith.

Borell’s theorem shows that OPT ≤ θGW /π; in fact, the Goemans–Williamson algorithm produces
a solution with (roughly) this objective value. On the other hand, we have shown above that SDP ≥
(1− cos θGW)/2. Therefore

OPT

SDP
≤ 2

π

θGW
1− cos θGW

= αGW .

This is the desired integrality gap, showing that the Goemans–Williamson rounding procedure is optimal
(for arguments which compare ALG only to SDP).

35

4.4 Hardness of approximation, and the unique games conjecture

We have shown that the analysis of the Goemans–Williamson algorithm is tight, and that random hyperplane
rounding cannot be improved. However, this doesn’t mean that the Goemans–Williamson algorithm can’t
be improved, say by using one of the many SDP hierarchies, which are stronger and stronger relaxations,
whose value in the limit coincides with the integer program. In this section, we will show (with an asterisk)
that this is not the case, following the footsteps of Khot, Kindler, Mossel, and O’Donnell [KKMO07].

We will attempt to reduce Label Cover to MAX-CUT. Given ε > 0, we will define γ > 0, and construct
a reduction from the promise version of Label Cover to a gap version of MAX-CUT. Recall that an instance
of Label Cover consists of a bipartite graph (U, V,E) and, for each edge, a function πe : Σ→ ∆, where Σ,∆
are finite alphabets depending only γ. The goal is to construct a Σ-coloring of U and a ∆-coloring of V
which satisfies as many of the constraints πe as possible; denoting the coloring by c, it satisfies a constraint
πuv if πuv(c(u)) = c(v).

The instance Π of label cover is promised to be either satisfiable or at most γ-satisfiable, that is, at most
a γ-fraction of the constraints is satisfied by any coloring. Given such an instance, we wish to construct, in
polynomial time, an instance Ψ of MAX-CUT such that for some S,C which can be computed efficiently
from Π, the following hold:

� Completeness. If Π is satisfiable, then the maximum cut in Ψ is at least C.

� Soundness. If Π is at most γ-satisfiable, then the maximum cut in Ψ is at most S.

If S/C is always at most β, then any approximation algorithm whose approximation ratio is better than β
can be used to determine whether Π is satisfiable or at most γ-satisfiable, which is NP-hard.

We will describe the instance of MAX-CUT as a Boolean CSP in which the allowed constraints are of
the form x 6= y. Following our footsteps in the case of MAX-3LIN, we will encode the colors using the Long
Code. This means that for every vertex u ∈ U we will have variables encoding a function fu : {±1}Σ → {±1}.
Similarly, for every vertex v ∈ V we will have variables encoding a function fv : {±1}∆ → {±1}. In the
MAX-3LIN hardness proof, we forced the functions fu, fv to be odd using folding, which was a requirement
of the dictatorship test. Here we cannot do this, since a constraint of the form x 6= y could become a
constraint of the form x = y.

Dictatorship test Which dictatorship test should we use? One option that comes to mind stems from the
construction of the algorithmic gap. Suppose we are given a function f : {±1}n → {±1}. The construction
sampled ρ-correlated x, y ∈ {±1}n (meaning that the marginals are uniform and E[xiyi] = ρGW), and
checked that f(x) 6= f(y). If f is a dictator, say f(x) = xi, then the test passes when xi 6= yi, which happens
with probability (1− ρGW)/2 ≈ 0.844.

We are aiming at an inapproximability of αGW , and so the hope is that if Pr[f(x) 6= f(y)] ≥ θGW /π + δ
then f has some useful structure. When describing the integrality gap, we encountered a problem whose op-
timal solution is θGW /π, namely maximize Pr[f(x) 6= f(y)] over ρ-correlated Gaussians. We can implement
a Gaussian on the Boolean cube using the mapping

(x1, . . . , xn) 7→ x1 + · · ·+ xn√
n

.

If the left-hand side is a random point in {±1}n, then according to the central limit theorem, the right-hand
side is close to a Gaussian (in various metrics). Composing this with the optimal solution for the Gaussian
problem, which is the sign function, we obtain the Majority function on the Boolean cube.

How is the Majority function different from a dictator? The Majority function depends “smoothly” on
all inputs. One way to quantify this is using influences: the influence of the i’th coordinate is the probability
that flipping the i’th coordinate flips the value of the function. In the case of dictators, one coordinate has
influence 1, and the rest have influence 0. In the case of majority, all coordinates have influence Θ(1/

√
n),

which is the probability that a random point on the cube is exactly balanced.

36

An important result in Boolean function analysis, the invariance principle [MOO10], states that if all
influences of a function are small, and an additional mild technical condition holds,2 then the function
behaves as if it lived on Gaussian space! In fact, the invariance principle was proved expressly for completing
the analysis of the very result we are now describing: inapproximability of MAX-CUT.

In our case, the invariance principle implies that if Pr[f(x) 6= f(y)] ≥ θGW /π+δ then f has an influential
coordinate (that is, has influence at least τ , for an appropriate constant τ). While arbitrary Boolean functions
can have many influential coordinates (for example, all coordinates of the parity function are maximally
influential), we can slightly change the definition of influence to ensure that only O(1) many coordinates can
be influential.3 We are then in much the same position as in the MAX-3LIN reduction.

First attempt and hardness of MAX-2LIN The actual reduction has to combine this dictatorship
test with a consistency check that throws in the constraints πe, but we can do this just as before. Recall
that for y ∈ {±1}∆, we defined y ◦ πuv ∈ {−1}Σ as follows: (y ◦ πuv)σ = yπuv(σ). Our MAX-CUT instance
Ψ then corresponds to the following test:

� Choose a random edge (u, v) ∈ E.

� Choose y ∈ {±1}∆ at random.

� Choose z ∈ {±1}∆ at random in a biased manner: zi = 1 with probability (1 + ρGW)/2.

� Check whether fv(y) 6= fu((yz) ◦ πuv).

(Previously the noise z was on the Σ side, but here it is more convenient to have it on the ∆ side, since there
is no x.)

Let’s check that everything works out when Π is satisfiable, say using a coloring c. We define fu(x) = xc(u)

and fv(y) = yc(v). Since πuv(c(u)) = c(v), we have

fu((yz) ◦ πuv) = (yz)πuv(c(u)) = yc(v)zc(v),

and so the test succeeds with probability (1− ρGW)/2, as desired.
Now let us see move on to soundness. Suppose that the test succeeds with probability at least θGW /π+ε.

This can only happen if at least ε/2 of the edge tests succeed with probability at least θGW /π + ε/2. Call
an edge for which this happens a good edge. If (u, v) is a good edge then

Pr[fv(y) 6= Fu,v(yz)] ≥ θGW /π + ε/2, where Fu,v(y) = fu(y ◦ πuv).

Unfortunately, the probability on the left is not quite what a result such as Borell’s theorem actually bounds,
since two different functions appear there.

As a warm-up, recall that when analyzing the algorithmic gap, we proved that Pr[f(x) 6= f(y)] ≤ (1−ρ)/2
for ρ-correlated inputs x, y on the Boolean cube (where ρ < 0); we did this by showing that E[f(x)f(y)] ≥ ρ.
What happens when we allow two functions f, g? When we repeat the same proof, we arrive at the following
identity:

E[f(x)g(y)] =
∑
S

ρ|S|f̂(S)ĝ(S).

If f = g then we can bound ρ|S|f̂(S)2 ≥ ρf̂(S)2, using the non-negativity of f̂(S)2. However, f̂(S)ĝ(S)
could be negative. This is reflected in the solution f = 1, g = −1, which satisfies E[f(x)g(y)] = −1. We
can rule out such solutions by declaring f, g to be odd, which can be accomplished by folding. While folding
is inadmissible for MAX-CUT, since it could lead to constraints of the form x = y, it is admissible for

2For the experts: the function has low degree, or at least small Fourier tails. In our case we will ensure this by applying a
small amount of noise to the function, which has the effect of slightly changing the value of ρGW .

3For the experts: we can use low-degree influences, or noisy influences.

37

MAX-2LIN, in which constraints are of either form x 6= y or x = y; let’s think of MAX-2LIN for now. We
can then bound

ρ|S|f̂(S)ĝ(S) ≥ ρ|f̂(S)| |ĝ(S)|,

since there is no contribution from S 6= ∅ (in fact, it suffices for one of the functions to be balanced). Applying
Cauchy–Schwarz, ∑

S

|f̂(S)| |ĝ(S)| ≤
√∑

S

f̂(S)2

√∑
S

ĝ(S)2,

and so we recover the desired inequality E[f(x)g(y)] ≥ ρ.
In a similar way, Borell’s inequality still works if f, g are odd (it suffices for one of the functions to

be balanced). Applying an appropriate version of the invariance principle,4 and it implies that if Boolean
functions f, g satisfy E[f(x)g(y)] ≥ θGW /π + ε/2, then they have a jointly influential variable, that is, some
variable has large influence in both (this will be important when analyzing the soundness of the construction).

Back to our test fv(y) 6= Fu,v(yz). We can guarantee that fv is balanced by requiring it to be odd,
allowing us to apply Borell’s theorem. We thus get that fv and Fu have a jointly influential variable. The
next step would be to construct a random coloring. On the V side, this is easy: for each v, we choose a
random influential variable. It is less clear what to do on the U side.5

Things become much easier if we assume that πuv is a permutation (and so Σ = ∆). Denoting the set
of influential coordinates of fu by Iu, it is not hard to check that the set of influential coordinates of Fu,v is
precisely π−1

uv (Iu), since the i’th input to fu comes from the πuv(i)’th input of Fu,v. Similarly denote the set
of influential coordinates of fv by Iv. If (u, v) is a good edge then according to the combination of Borell’s
inequality and the invariance principle, the sets Iu, π

−1
uv (Iv) must intersect. Therefore if we color u using a

random element c(u) ∈ Iu and v using a random element c(v) ∈ Iv, we would have c(v) = πuv(c(u)) with
probability 1/M , where M is a bound on the number of influential coordinates. Consequently, we will satisfy
an ε/2M -fraction of constraints. This will complete the proof of the soundness of the reduction (for the case
of MAX-2LIN!) if ε/2M > γ.

Can we choose our parameters in such a way that ε/2M > γ? For that, we need to dig deeper into where
M comes from. Recall that M is a bound on the number of influential coordinates, a concept that arises
from the invocation of the invariance principle. The invariance principle states that low-influence functions
on the Boolean cube behave almost as if they lived on Gaussian space. There is a trade-off between M and
the quantification of almost. The way that almost manifests itself is by an additive error, which in our case
needs to be smaller than ε/2 (recall that Borell’s theorem bounds the Gaussian quantity by θGW /π, and
we want to contradict it by assuming that the Boolean quantity is at least θGW /π + ε/2). Crucially, M
depends on this additive error but not on the dimension |Σ|; most results in Boolean function analysis have
this feature, dimension-independence. Therefore given ε > 0, we are free to choose γ < ε/2M ; there is no
circular dependence on parameters.

Unique Label Cover and UGC What happens when we restrict the Label Cover constraints πuv to
be permutations, a problem known as Unique Label Cover? The problem becomes easy, since it is easy to
check whether an instance is satisfiable! Indeed, if a coloring satisfies all constraints, then the color of a
single vertex determines the colors of all other vertices in its connected component. This leads to a simple
algorithm which enumerates the color of one vertex per connected component.

It could still be possible that Unique Label Cover is hard if we relax perfect completeness. That is, the
following could still hold: for every γ > 0 there is an alphabet Σ such that given an instance Π of Unique
Label Cover (with ∆ = Σ), it is NP-hard to distinguish between the following two cases:

4For the experts: see [Mos10, Proposition 1.15].
5There are two main issues. First, flipping a single coordinate in the input of Fu,v corresponds to flipping several coordinates

in the input of fu, and so influential variables of Fu,v don’t directly correspond to influential variables of fu. This can be handled
by a hybrid argument, incurring a multiplicative loss of |Σ|. Even worse is that the distribution of the remaining inputs of fu is
not uniform, since some coordinates are identical. This causes a multiplicative loss which is exponential in |Σ|. The argument
can perhaps be rescued if we assume that the constraints are 2-to-1, that is, |π−1

uv (τ)| = 2 for all u, v, τ . This version of Label
Cover has recently been proved to be NP-complete, with imperfect completeness [KMS18].

38

� Completeness. The instance Π is at least (1− γ)-satisfiable.

� Soundness. The instance Π is at most γ-satisfiable.

This is the famous Unique Games Conjecture (also known as UGC), suggested by Khot [Kho02] as a way to
tackle the inapproximability of MAX-2LIN (in a different parameter setting).

We don’t know whether the Unique Games Conjecture is true. A major recent result, due to Khot,
Minzer and Safra [KMS18] (with help from others), states that the variant of Label Cover in which the
constraints satisfy |π−1

uv (τ)| = 2 for all τ ∈ ∆ is NP-hard, with imperfect completeness. Khot conjectured
that this version of Label Cover is NP-hard even with perfect completeness, and this conjecture, known as the
2-to-1 conjecture, remains open. Perfect completeness is important in order to get hardness of approximation
results with perfect completeness, and to that end, Braverman, Khot and Minzer recently showed that the
Unique Games Conjecture is equivalent to a strengthened form of the 2-to-1 conjecture, in which the games
in question are “rich” [BKM21]x.

To recap what we have seen so far, we have shown that the unique games conjecture implies that MAX-
2LIN is αGW + ε-hard to approximate for any ε > 0. Unfortunately, no matching approximation algorithm
is known.

Hardness of MAX-CUT Let us finally go back to MAX-CUT. Recall that the issue with our reduction
is that the analysis involves proving lower bounds on

Pr[fv(y) 6= Fu,v(yz)],

where y, z are ρGW -correlated, and these are only available if we can guarantee that the functions in question
are balanced. One way to guarantee this is by forcing the functions to be odd via folding, but this could
result in = constraints, which are allowed in MAX-2LIN but not in MAX-CUT. There was no such issue
with the single-function version of Borell’s theorem.

To gain some intuition, recall that given a coloring c, we defined fu(x) = xc(u), and so if c satisfies the
constraint πuv then Fu,v(y) = yπuv(c(u)) = yc(v). In other words, Fu,v depends only on v! This suggests
choosing two different vertices u1, u2 ∈ U and comparing Fu1,v and Fu2,v. The marginal distributions of
(u1, v), (u2, v) need to be uniform over all edges in E, and this can be accomplished by first sampling an
edge (u1, v) and then a random neighbor u2 of v. The probability of choosing an edge (u2, v) is then

deg(v)

|E|︸ ︷︷ ︸
Pr[v]

· 1

deg(v)︸ ︷︷ ︸
Pr[u2|v]

=
1

|E|
,

as needed. We reach the following test, which specifies an instance Ψ of MAX-CUT:

� Choose a random vertex (u1, v) and a random neighbor u2 of v.

� Choose y ∈ {±1}∆ at random.

� Choose z ∈ {±1}∆ at random in a biased manner: zi = 1 with probability (1 + ρGW)/2.

� Check whether Fu1,v(y) 6= Fu2,v(yz), that is, whether fu1
(y ◦ πu1v) 6= fu2

((yz) ◦ πu2v).

Notice that we no longer need to include the functions fv in the variable set of Ψ.
If the Unique Label Cover instance Π is (1− γ)-satisfiable, then we can convert a coloring c satisfying a

(1 − γ)-fraction of the constraints into a solution to Ψ as follows: fu(x) = xc(u). The union bound shows
that if we choose u1, u2, v as in the test, then both constraints πu1v, πu2v hold with probability at least
1− 2γ. Hence Ψ has value at least C = (1− 2γ)(1− ρGW)/2, only slightly smaller than what we obtained
for MAX-2LIN.

39

What about soundness? Consider a solution of Ψ which satisfies an (θGW /π + ε)-fraction of constraints.
As before, an ε/2-fraction of choices of (u1, u2, v) are good in the sense that

Pr
y,z

[Fu1,v(y) 6= Fu2,v(yz)] ≥ θGW /π + ε/2.

However, this expression still involves two different functions. How should we proceed?
Recall that in our intended solution, both functions Fu1,v, Fu2,v were equal to the same dictator yc(v).

This suggests a natural way of getting rid of the u-part, namely to consider

gv(y) = E
u∈N(v)

[Fu,v(y)],

where N(v) is the set of neighbors of v. This is no longer guaranteed to be a Boolean function, but it does
satisfy |gv(y)| ≤ 1, which will suffice for our purposes.

The definition of gv, which doesn’t depend on u1, u2, suggests changing the definition of good : we will
say that v ∈ V is good if

Pr
u1,u2
y,z

[Fu1,v(y) 6= Fu2,v(yz)] ≥ θGW /π + ε/2.

The same averaging argument shows that this still happens with probability at least ε/2, that is, the fraction
of good v is at least ε/2.

If v is good, what does this say about gv? Using the formula Pr[Fu1,v 6= Fu2,v] = E[(1− Fu1,vFu2,v)/2],
we see that

1− 2θGW /π − ε ≤ E
u1,u2
y,z

[Fu1,v(y)Fu2,v(yz)] = E
yz

[gv(y)gv(z)].

Borell’s theorem was stated for Boolean functions, but in fact it works under the assumption that the
function in question takes values in the interval [−1, 1]; this is easy to check for the corresponding bound
on the Boolean cube, which in fact works as long as the norm of the function is at most 1. It therefore
follows (via the invariance principle, in its classical form) that gv has an influential variable, for the correct
definition of influence.

Recall that for Boolean functions f , we defined the influence of the i’th coordinate as the probability that
f(x) 6= f(x⊕i), where x⊕i results by flipping the i’th coordinate of x. The analogous definition for arbitrary
functions is

Infi[f] = E
x

[(
f(x)− f(x⊕i)

2

)2
]
.

This agrees with the definition for Boolean functions. In fact, any definition of the form E[|(f(x)−f(x⊕i))/2|p]
would. The advantage of this particular definition is that it results in a nice formula for the influence. The
idea is to expand the expression inside the brackets using the Fourier expansion:

f(x)− f(x⊕i)

2
=
∑
S

f̂(S)
χS(x)− χS(x⊕i)

2
.

If i /∈ S then χS(x) doesn’t depend on xi, and so the fraction on the right vanishes. Otherwise, χS(x⊕i) =
−χS(x), and so the fraction on the right evaluates to χS(x). In other words,

f(x)− f(x⊕i)

2
=
∑
i∈S

f̂(S)χS(x).

The right-hand side is just the Fourier expansion of the left-hand side, and so Parseval’s identity shows that

Infi[f] =
∑
i∈S

f̂(S)2.

40

Remark We can now explain how to bound the number of influential variables. Let Inf[f] =
∑
i Infi[f], the total

influence of f , which is equal to
∑
S |S|f̂(S)2. One way is to ask that f have bounded degree d, meaning that

f̂(S) 6= 0 only when |S| ≤ d. In this case Inf[f] ≤ d, and so there are at most d/τ coordinates whose influence is at
least τ . The invariance principle still holds if we only consider the low-degree influences of f , which are the influences
of its low-degree part f≤d =

∑
|S|≤d f̂(S)χS .

Another way is to consider the noisy version of f , defined as follows: Tρf(x) = E[f(y)], where (x, y) are ρ-

correlated. The total influence of Tρf is at most maxs∈N sρ
s. The invariance principle still holds if we only consider

the noisy influences of f , which are the influences of Tρf for ρ close to 1.

We now proceed as in the case of MAX-2LIN. Let Jv be the set of influential variables of gv, which has
size at most M . We choose a color c(v) ∈ Jv at random. It is natural to define Ju in the same way (perhaps
with a different threshold), and to color the vertices in U by choosing c(u) ∈ Ju at random. To see whether
this works, let us try to relate Infi[gv] to the influences of fu.

The starting point is the Fourier expansion of gv:

gv(y) = E
u∈N(v)

[fu(y ◦ πu,v)] = E
u∈N(v)

[∑
S

f̂u(S)χπu,v(S)(y)

]
=
∑
T

χT (y) E
u∈N(v)

[f̂u(π−1
u,v(T))].

Now suppose that Infi[gv] ≥ τ , where τ is our threshold for influential for the sake of defining Jv, which
depends only on ε. Substituting the formula for the influence,

τ ≤
∑
i∈T

(
E

u∈N(v)
[f̂u(π−1

u,v(T))]

)2

.

Looking forward, we would like to move the square inside the expectation, to get an expression involving
squares of Fourier coefficients. We can accomplish this by applying Cauchy–Schwarz:

τ ≤
∑
i∈T

E
u∈N(v)

[f̂u(π−1
u,v(T))2] = E

u∈N(v)

[∑
i∈T

f̂u(π−1
u,v(T))2

]
.

The expression inside the expectation on the right is at most 1 by Parseval’s identity. Applying an averaging
argument, wee see that at least a τ/2-fraction of the neighbors u ∈ N(v) satisfy∑

i∈T
f̂u(π−1

u,v(T))2 ≥ τ

2
.

We call such a neighbor i-good. Observe now that∑
i∈T

f̂u(π−1
u,v(T))2 =

∑
i∈πuv(S)

f̂u(S)2 = Infπ−1
uv (i)[fu].

This gives us the correct definition of Ju: it consists of all variables whose influence on fu is at least τ/2, of
which there are at most 2M (in fact, in order to be able to obtain this bound, we need to replace influence
by one of its variants; this works out). The argument above shows that if i ∈ Jv then π−1

uv (i) ∈ Ju. We
define c(u) to be a random element of Ju if Ju is non-empty, and arbitrarily otherwise.

Suppose that v is a good vertex and that u is a c(v)-good neighbor of v. Then c(u) = π−1
uv (c(v)) ∈ Ju, and

so the constraint πuv is satisfied with probability at least 1/|Ju| = 1/2M . Since a random vertex is good with
probability at least ε/2, and a random neighbor is good with probability at least τ/2, a random assignment
satisfies an ετ/8M -fraction of constraints. Since ετ/8M depends only on ε, we can choose γ < ετ/8M ,
completing the soundness proof.

Recapping, we gave a reduction that transforms an instance Π of Unique Label Cover into an instance
Ψ of MAX-CUT with the following properties:

� Completeness. If Π is at least (1− γ)-satisfiable then Ψ has value at least (1− 2γ)(1− ρGW)/2.

41

� Soundness. If Ψ has value at least (θGW /π + ε) then Π is more than ετ/8M -satisfiable, where τ,M
depend only on ε.

If we choose γ = ετ/8M , then the unique games conjecture implies that it is NP-hard to distinguish
between instances of MAX-CUT whose value is at least C = (1− ετ/4M)(1− ρGW)/2 and instances whose
value is at most S = θGW /π + ε; we also say that the task is UGC-hard. As ε → 0, the ratio between C/S
approaches αGW . We conclude that it is UGC-hard to approximate MAX-CUT better than αGW + δ, for
any δ > 0.

4.5 Extensions: O’Donnell–Wu and Raghavendra’s theorem

The performance of the Goemans–Williamson algorithm depends on the value of the true maximum cut: for
example, one can show using our analysis that if the maximum cut has value 1− ε, then the algorithm finds
a cut whose value is 1 − O(

√
ε). Khot introduced his unique games conjecture to show that this is tight,

up to the hidden constant. More generally, for a given optimization problem, we can study the set of pairs
(C, S) such that it is possible to efficiently distinguish between instances whose value is at least C and those
whose value is at most S. For MAX-CUT, this was accomplished by O’Donnell and Wu [OW08] (assuming
the unique games conjecture).

Algorithmically, O’Donnell and Wu use the same SDP, rounded by projecting to a random direction and
then probabilistically rounding the result to ±1 in an arbitrary way (rather than just using the sign, as in the
Goemans–Williamson algorithm). To prove hardness, they first generalize the integrality gap construction of
Feige and Schechtman by choosing the correlation ρ at random. They show that the two problems, finding
the best rounding procedure and finding the best distribution of ρ, are dual, and so their algorithm matches
their integrality gap. Finally, they plug the integrality gap construction into a hardness proof similar to
ours, obtaining a matching hardness of approximation result.

Raghavendra [Rag08] extended the analysis in a different direction: to arbitrary CSPs on a fixed finite
alphabet. First, Raghavendra constructs a canonical semidefinite program which works for all CSPs. Second,
he gives an optimal rounding procedure, involving projection into a constant number of random directions,
which matches the optimal integrality gap. Finally, he plugs the integrality gap construction into a hardness
of approximation proof, showing that his approximation algorithm is optimal (assuming the unique games
conjecture). This reduction differs from ours since it involves more than two functions.

Raghavendra’s theorem highlights the importance of both the unique games conjecture and semidefinite
programming, and is the crowning jewel in the hardness of approximation literature.

42

5 Proof complexity

5.1 SAT solving and Resolution

Given a SAT instance, that is, a set of clauses, how do we check whether it is satisfiable or not? One possible
algorithm is to try all possible truth assignments, but this always runs in time 2n, where n is the number of
variables. An improvement over this trivial algorithm is an algorithm based on branching. At each step, we
choose a variable x, and split on its possible truth values. Each branch in this tree corresponds to a partial
assignment of the variables. If a partial assignment falsifies a clause then it can be pruned. Eventually, either
a satisfying assignment is found, or all branches are pruned, in which case we have a decision tree that, given
a truth assignment, finds a clause it falsifies.

Here is an example of this algorithm, when run on the CNF (x ∨ y) ∧ (x ∨ ȳ) ∧ (x̄ ∨ z) ∧ z̄:

x

y

x ∨ y

0

x ∨ ȳ

1

0

z

x̄ ∨ z

0

z̄

1

1

If all branches below a node v are pruned, then this means that the partial assignment corresponding to
v has been ruled out. For example, the node labelled y above rules out the assignment x = 0, and this can
be expressed as the clause x̄. In the case of the rightmost leaf, the ruled out assignment is x = z = 1, and
the corresponding clause x̄ ∨ z̄ follows from the stated clause. Finally, the root rules out the empty clause,
which we denote by ⊥. We obtain the following tree:

⊥

x̄

x ∨ y x ∨ ȳ

x

x̄ ∨ z x̄ ∨ z̄

z̄

Here each of the leaves is labelled by an input clause, which we can think of as an axiom. The clause
x̄∨ z̄ is obtained from the axiom z̄ through weakening : given a clause C, we can always derive a clause C ∨ `,
for any literal `. Branching corresponds to the cut rule: From C ∨ x and D ∨ x̄, we can derive the clause
C ∨D. We also say that C ∨D is obtained by resolving the two clauses C ∨ x and D ∨ x̄. We have reached
the proof system known as Resolution.

A proof in Resolution is a sequence of lines, each of which is a clause. Each line is either an axiom, or
follows from a preceding line via weakening, or follows from two preceding lines via the cut rule. Each line
logically follows from the lines implying it, and so every line in Resolution logically follows from the axioms.

We often use Resolution as a system for refuting CNFs. The set of clauses comprising the CNF are
the axioms. If we can derive the empty clause ⊥, then we have refuted the CNF. This begs the following
question: can Resolution be used to refute every unsatisfiable CNF? We can use the connection between
Resolution and branching algorithms to prove this in a strong form known as implicational completeness.

43

Suppose that φ is a CNF over the variables x1, . . . , xn which implies a clause C, say C = x1 ∨ · · · ∨ x`.
We can construct a decision tree of depth n − ` which simply queries all variables x`+1, . . . , xn. Each leaf
assigns a truth value to all variables x`+1, . . . , xn. If we complete it to a truth assignment of all variables by
setting x1, . . . , x` to false, then we must falsify one of the clauses, by our assumption that the CNF implies
C. Here is how this works with the CNF (y ∨ z)∧ (y ∨w)∧ (z̄ ∨ w̄) and the clause y, corresponding to ruling
out the partial truth assignment y = 0:

z

w

y ∨ z

0

y ∨ z

1

0

w

y ∨ w

0

z̄ ∨ w̄

1

1

We can convert this into a Resolution proof just as before, adding y to each clause:

y

y ∨ z

y ∨ z ∨ w

y ∨ z

y ∨ z ∨ w̄

y ∨ z

y ∨ ¬z

y ∨ z̄ ∨ w

y ∨ w

y ∨ z̄ ∨ w̄

z̄ ∨ w̄

This process can always be performed, and it shows that if a CNF φ implies a clause C, then C can be
deduced from φ using Resolution.

Admissibility of weakening Do we really need the rule of weakening? In some sense, we do. Consider
the CNF x∧ y. This CNF implies the clause x∨ y, but the only way to derive it is via weakening. However,
the weakening rule can be avoided if all we are interested in is proving unsatisfiability of CNFs. This follows
from the following simple observation, in which C ′ is a strengthening of C if it is obtained from C by dropping
some of the literals:

Lemma. Suppose that E is the resolvent of C,D, and C ′, D′ are strengthenings of C,D.
Either the resolvent of C ′, D′ is a strengthening of E, or one of C ′, D′ is itself a strengthening of E.

Given a proof consisting of clauses C1, . . . , CN and a strengthening C ′1 of C1, we can apply the lemma
step-by-step to construct a new proof C ′1, . . . , C

′
N in which each C ′i is a strengthening of Ci; some of the

steps now consist just of copying clauses which have already been proven. If CN is the empty clause then so
is C ′N , and so applying this step to a refutation of a CNF results in another refutation.

Starting with a refutation of a CNF φ, we can apply this transformation repeatedly to get rid of all
weakening steps, thus obtaining a refutation of φ without weakening steps. Similarly, if we have a proof
of C, then we obtain a proof of some strengthening of C without weakening steps. This is the form of
implicational completeness which holds without weakening.

The proof of the lemma itself is quite simple. Suppose that E is obtained by cutting over x, say x appears
positively in C and negatively in D. If C ′ contains x and D′ contains x̄, then cutting C ′, D′ over x results in

44

a strengthening of E. If C ′ doesn’t contain x then it is a strengthening of E. Similarly, if D′ doesn’t contain
x̄ then it is a strengthening of E.

5.2 DPLL and Horn SAT

The DPLL algorithm [DLL62], named after Davis, Putnam, Logemann and Loveland, and itself an improve-
ment of the Davis–Putnam procedure [DP60], improves over the naive branching algorithm by introducing
two optimizations: pure literal elimination, and unit propagation. DPLL is the basis for all modern SAT
solvers, together with the more recent technique of clause learning, which is described below.

Pure literal elimination is the following simple rule: if all occurrences of a variable x are of the same
polarity, say all of them are positive, then we might as well assign x to be true, and remove all clauses
containing x. If the CNF is still unsatisfiable, then we can still deduce this using Resolution, by simply never
using any clause mentioning x.

Unit propagation is an optimization aimed at unit clauses, which are clauses containing a single literal.
Suppose that our CNF contains a clause x. This means that x must be set to true. Any other clause that
contains x is automatically satisfied, and if a clause contains x̄, then we can just remove it. The latter
operation could create a new unit clause, and we continue the process of propagation until it stabilizes.
Since we can remove x̄ from a clause by cutting it with the unit clause x, any resulting refutation can still
be described using Resolution.

We have actually already seen unit propagation when we discussed Horn SAT in Section 2.7. The algo-
rithm we gave there consisted of a single run of unit propagation (with a slight difference: we only considered
positive unit clauses). If this produces an empty clause then the instance is unsatisfiable. Otherwise, the
instance contains no unit clauses. Since each remaining clause is still a Horn clause (contains at most one
positive literal), assigning false to all remaining variables satisfies the instance.

In the DPLL algorithm, both of these rules are applied at each step, before splitting: first we perform unit
propagation, and then we perform pure literal elimination. At this point we can either point at a falsified
axiom, or we need to choose a new variable to split over. This choice isn’t specified by the algorithm, and
different SAT solvers implement it in different ways.

This issue highlights a gap between proof systems and SAT solving algorithms: SAT solvers need to find
a short proof efficiently. In proof complexity, the goal is to prove lower bounds on the lengths of proofs in a
given proof system, such as Resolution. If a certain CNF is hard to prove in Resolution, then no SAT solver
which can be simulated by Resolution will refute it efficiently. The other direction isn’t so clear. First, SAT
solvers cannot necessarily simulate arbitrary Resolution proofs; we will soon see an example of that. Second,
even if a given proof could in principle be found by a SAT solver, it is not clear how to implement such
a proof search algorithm efficiently, even if we allow ourselves to produce suboptimal but still non-trivial
proofs. We address this issue below as well.

CDCL When simulating the variable splitting algorithm using Resolution, the resulting proof corresponds
to a decision tree. This means that every derived clause is used at most once. We call such a proof tree-like.
However, our description of the Resolution proof system contained no such constraint; its proofs could reuse
intermediate clauses, resulting in DAG-like proofs.

DAG-like proofs are provably stronger than tree-like proofs, though we would not prove so here; see
Iwama and Miyazaki [IM99] for an example using the pigeonhole principle, and Ben-Sasson, Impagliazzo
and Wigderson [BSIW04] for an example using pebbling formulas. This shows that DPLL cannot possibly
simulate Resolution, since it only ever produces tree-like proofs.

In the 1990’s, Marques-Silva and Sakallah [MSS99] and, separately, Bayardo and Schrag [BS97] suggested
an enhancement to DPLL which causes it to correspond to DAG-like proofs, known as conflict-driven clause
learning (CDCL). The basic idea is that every time that the algorithm prunes a branch, it learns a clause,
by analyzing the “conflict” which resulted in the pruning. This is a clause which is implied by the CNF,
and suffices to rule out the partial assignment under consideration. The clause is added to the collection
of axioms, and can be used to prune other branches. Since a learned clause could be used more than once,

45

when converting the transcript of a CDCL algorithm to Resolution, the result is a DAG-like proof. CDCL
algorithms incorporate further optimizations to the branching process such as backjumping (backtracking
more than the minimal number of levels), which we will not describe here.

A long line of work, culminating in Pipatsrisawat–Darwiche [PD11], showed that CDCL, as a meta-
algorithm, simulates Resolution (with a polynomial loss); see also [BKS04, AFT11]. However, CDCL can
only accomplish this nondeterministically: more recently, Atserias and Müller [AM20] showed that it is NP-
hard to distinguish between formulas which can be refuted in polynomial length and those which require
subexponential length. In particular, Resolution is not automatable: no algorithm can produce a Resolution
proof of a CNF in time which is polynomial in the shortest length of a Resolution proof of the CNF.

5.3 2SAT and width

Schaefer’s theorem, in its classical statement (see Section 2.7), describes three non-trivial tractable families of
CSPs: 2SAT, Horn SAT, and linear equations. In the preceding section, we explained how unit propagation
can refute any unsatisfiable instance of Horn SAT. Let us now turn to 2SAT.

The main observation is that the resolvent of two width 2 clauses is another width 2 clause: if we resolve
`1 ∨ x with `2 ∨ x̄, we obtain `1 ∨ `2. Since Resolution is complete, this suggests a simple algorithm for
solving 2SAT: apply the cut rule to pairs of clauses until no new clauses can be produced in this way. If the
empty clause is reached, then the instance is unsatisfiable. Conversely, since Resolution is implicationally
complete, if the instance is unsatisfiable, then the empty clause will be reached. Since there are only O(n2)
possible clauses, this algorithm is efficient, running in time O(n4) or better.

This suggests studying the refutation width of a CNF. This is the minimum width of a refutation of the
CNF, where the width of a refutation is simply the maximum width of a clause in the refutation. If a CNF
has refutation width w, then there are O(nw) possible clauses, and so the CNF can be refutated in time
O(n2w), which is efficient (polynomial) if w is constant. Compare this to the result of Atserias and Müller
mentioned above, which states that without any assumption on the CNF, Resolution isn’t automatable.

5.4 Tseitin contradictions

We will begin our study of width with the so-called Tseitin contradictions [Tsei68], one of the most important
contradictions in proof complexity (together with the pigeonhole principle). Given a graph G = (V,E) and
an assignment w : V → {0, 1}, the Tseitin formula is a formula in which there is a variable xe for each edge,
and 2d−1 clauses for every vertex v ∈ V of degree d, expressing the linear constraint⊕

{u,v}∈E

xuv = w(v).

We always assume that G is connected, since if a Tseitin formula is unsatisfiable, then the subformula corre-
sponding to one of the connected components will also be unsatisfiable, and a refutation could concentrate
on it. Furthermore, typically G has constant degree, guaranteeing that the Tseitin contradiction has a linear
number of clauses (in terms of the number of variables).

If
⊕

v∈V w(v) = 1 then the formula is a contradiction, since
⊕

v∈V w(v) is also what we get if we XOR
all linear constraints. The converse also holds: if

⊕
v∈V w(v) = 0 then the formula is satisfiable. To see this,

let T be a spanning tree of G, and root it at some arbitrary vertex. Given an assignment w : V → {0, 1} and
an edge uv, where u is closer to the root, let xuv be the XOR of w(p) over all vertices p in the subtree Tv
rooted at v (including v).

If v is any vertex other than the root, let u be its parent, and let v1, . . . , v` be its children (if any). Then

xuv ⊕
⊕̀
i=1

xvvi =
⊕
p∈Tv

w(p)⊕
⊕̀
i=1

⊕
p∈Tvi

w(p) = w(v),

46

since every vertex other than w(v) appears twice in the second expression above. If v is the root then

⊕̀
i=1

xvvi =
⊕̀
i=1

⊕
p∈Tvi

w(p) =
⊕
p 6=v

w(p) = w(v),

since
⊕

v∈V w(v) = 0. Therefore x is a satisfying assignment.

Width in “XOR Resolution” Gaussian elimination can be used to refute a Tseitin contradiction, that
is, an unsatisfiable Tseitin formula. This can be expressed as a version of Resolution in which the lines are
linear equations, and in which the only deduction rule takes two lines `1 = b1 and `2 = b2 and deduces
`1 ⊕ `2 = b1 ⊕ b2. The goal is to reach 0 = 1.

It is natural to define the width of a line to be the number of variables appearing in it. The width of
a proof is then the maximum width of a line appearing in it, and the width of a contradictory set of linear
equalities is the minimum width required to refute it.

Each line in an XOR Resolution proof is an XOR of axioms. In the case of Tseitin formulas, the XOR of
the linear equations corresponding to the vertices in S ⊆ V states that the parity of all edges crossing the
cut (S, S) is

⊕
v∈S w(v); in particular, the width of the line is the size of the cut (S, S).

If we choose G to be a random 3-regular graph, then with high probability, the size of a cut (S, S) will
be proportional to min(|S|, |S|); this is since such graphs are expanders. Explicit constructions of expanders
are known. For example, if p is a prime, we can construct a graph whose vertex set is Zp, connecting i ∈ Zp
to i± 1, i−1, where 0−1 = 0 is a self-loop.

Let G be a (connected) graph on n vertices such that the size of a cut (S, S) is Ω(min(|S|, |S|)). If
we could show that every refutation of a Tseitin contradiction on G must involve a “complex” line, which
results from XORing many axioms, then it would follows that the Tseitin contradiction has large width.
This suggests tracking, for each line, the number of axioms which XOR to it; we denote this measure by
m(`).

If ` is an axiom then m(`) = 1. In contrast, m(0 = 1) = n. Indeed, if S (V then the corresponding
axioms are not contradictory. To see this, take any v /∈ S, and notice that if we flip w(v) then the Tseitin
formula becomes satisfiable; in particular, the axioms corresponding to S are not contradictory.

If ` is derived from `1 and `2 then clearly m(`) ≤ m(`1) +m(`2), and so the value of m cannot “jump”.
In particular, we can find a line ` in the proof whose m-complexity is between n/4 and n/2 using a proof
search, as we show below. The width of this line is Ω(n/4) = Ω(n).

The proof search starts at the contradiction 0 = 1. As long as the current line `′ has m-complexity at
least n/2, we consider the two lines `′1, `

′
2 implying it, and proceed to the one with larger m-complexity. The

search has to stop eventually, since all lines have m-complexity 1 (here we need to assume that n ≥ 3). When
the search stops at a line `, the preceding line `′ has m-complexity at least n/2, and so m(`) ≥ m(`′)/2 ≥ n/4.

Width in Resolution The same argument can be adapted to bound the width of Resolution refutations
of Tseitin contradictions of graphs with large cuts. For a clause C, we define m(C) to be the minimum
number of vertices whose corresponding axioms imply C. As before, the m-complexity of axioms is 1 and
the m-complexity of the empty clause is n, and so there is a clause C whose m-complexity is between n/4
and n/2. It remains to show that C has large width.

Suppose that S is a minimal set of vertices whose axioms imply C. It is natural to expect C to mention
all variables in the cut (S, S), and so have width Ω(n). To see that this is the case, suppose that {u, v}
is such an edge, say v ∈ S and u /∈ S. Suppose that xuv does not appear in C. Since S \ {v} does not
imply C, there is an assignment which satisfies all axioms concerning vertices in S \{v} but falsifies C. Such
an assignment necessarily satisfies

⊕
z∼v xzv 6= w(v). Since xuv does not appear in C, if we flip the value

of xuv then we get an assignment which satisfies all axioms concerning vertices in S but still falsifies C,
contradicting the assumption.

47

Concluding, a Tseitin contradiction corresponding to an expander on n vertices requires width Ω(n) to
refute in Resolution. But does this imply that the contradiction is hard to refute under a more standard
measure, such as the number of lines?

5.5 Size and width

Ben-Sasson and Wigderson [BSW01], adapting prior work of Clegg, Edmonds and Impagliazzo [CEI96],
showed that CNFs which have large Resolution width require long Resolution refutations. In particular,
Tseitin contradictions corresponding to bounded degree expanders on n vertices require 2Ω(n) lines to refute
in Resolution. This shows that in contrast to the other tractable cases in Schaefer’s theorem, refuting
contradictory sets of linear equations is hard for Resolution.

Branching and width In order to refute a CNF φ, the branching algorithm described in Section 5.1
chooses a variable x and refutes φ|x=0 and φ|x=1. In the context of the branching algorithm, a refutation of
φ|x=0 corresponds to a proof of x, and a refutation of φ|x=1 corresponds to a proof of x̄. Applying the cut
rule, we obtain the empty clause, thus showing that φ is unsatisfiable.

This process can be carried out in general. First, let us explain what we mean by φ|x=0. It is the CNF
obtained by removing all clauses containing x̄ (these clauses are trivially true), and removing x from all
clauses containing it (since x = 0). Given a refutation of φ|x=0, we can reintroduce x to the clauses from
which it was dropped. The result is either a refutation of φ|x=0 or a proof of x. In terms of width, this
shows that

w(φ ` x) ≤ w(φ|x=0 ` ⊥) + 1,

where w(φ ` C) is the minimum width required to deduce C from the clauses in φ.
We can improve on this simulation if the clause x̄ is already available. Instead of reintroducing x, we

simply derive the clauses of φ|x=0 from the clauses of φ: to derive C from C ∨ x, we simply cut it with x̄.
The final result is the empty clause. This shows that

w((φ ∧ x̄) ` ⊥) ≤ max(w(φ|x=0 ` ⊥), w(φ)),

where w(φ) is the width of φ; it comes up when deriving the clauses of φ|x=0.
Putting both kinds of proofs together, we deduce

w(φ ` ⊥) ≤ max(w(φx=0 ` ⊥) + 1, w(φx=1 ` ⊥), w(φ)).

This results from first converting a refutation of φ|x=0 to a proof of x, and then using it to convert a refutation
of φ|x=1 into a refutation of φ. The corresponding refutation is generally not tree-like even if we start with
tree-like refutations of φ|x=0 and φ|x=1, since the derived clause x̄ is cut against each of the axioms of φ
containing x.

Tree-like Resolution The branching algorithm always produces a tree-like proof. Can we view every
tree-like proof as an application of the branching algorithm? Here is how a general tree-like refutation of a
CNF φ looks like:

⊥

x

T1

x̄

T0

48

We can convert T1 into a refutation of φ|x=0 by substituting x = 0 throughout the proof. This means
that we drop all lines containing the literal x̄, and remove x from all lines containing it. This results in a
Resolution refutation of φ|x=0. Indeed, axioms of φ are transformed into axioms of φ|x=0, and the final line in
the new proof is x|x=0 = ⊥. It remains to check what happens to the various applications of the cut rule (we
can assume that the original proof doesn’t use weakening). An application of the form C ∨ x,D ∨ x̄ ` C ∨D
transforms into an instance of the weakening rule: C ` C ∨D. If y 6= x, then the cut C ∨ y,D ∨ ȳ ` C ∨D
transforms into another instance of the cut rule, obtained by removing x from C,D; or disappears from the
proof, if x̄ appears in C or D.

We would now like to combine this with the previous observation

w(φ ` ⊥) ≤ max(w(φx=b ` ⊥) + 1, w(φx=b̄ ` ⊥), w(φ)),

valid for b ∈ {0, 1}. We are interested in proving a result of the following form: if φ is a kCNF which can be
refuted in tree-like Resolution in length at most S, then it can be refuted in width f(S, k) (not necessarily in
a tree-like fashion). Using S for the refutation length of φ and S0, S1 for the refutation lengths of φ|x=0, φx=1,
this gives

f(S, k) ≤ max(f(Sb, k) + 1, f(Sb̄, k), k).

Since S = S0 + S1 + 1, we know that either S0 ≤ bS/2c or S1 ≤ bS/2c. Either way, we get

f(S, k) ≤ max(f(bS/2c, k) + 1, f(S − 1, k), k),

with an initial condition f(1, k) = 0. A straightforward induction shows that we can bound

f(S, k) ≤ log2 S + k.

We conclude that if the refutation width of the kCNF φ is w, then every tree-like Resolution refutation
of φ has at least 2w−k lines. If φ is a Tseitin contradiction of a bounded-degree expander on n vertices,
then the resulting lower bound is 2Ω(n). This should be compared to the trivial upper bound of 2O(n), which
follows from the proof of implicational completeness.

DAG-like Resolution In a general Resolution refutation, the trees T0, T1 could share vertices, and so
it is no longer the case that either S0 ≤ S/2 or S1 ≤ S/2. However, there is one thing that we can say.
Suppose that φ is a CNF over n variables. If x is a variable chosen at random and b ∈ {0, 1} is chosen at
random, then the substitution x = b kills a clause C (makes it trivially true) with probability w(C)/2n. In
particular, we can find x, b such that φ|x=b requires at most (1− 1/2n)S lines to prove. If the refutation is
minimal (no clause is unused) then x must appear in both polarities, and so φ|x=b̄ requires at most S − 1
lines to prove. This gives the following recurrence for g(S, k), which is a bound on the width required to
refute a kCNF which can be refuted in Resolution in length at most S:

g(S, k) ≤ max(g(1− 1/2n)S, k) + 1, g(S − 1, k), k),

with initial condition g(1, k) = 0. A straightforward induction shows that

g(S, k) ≤ log(1−1/2n)−1 S + k ≤ 2n lnS + k.

Therefore if φ is a kCNF which has refutation width w, then every Resolution refutation of φ contains at
least exp[(w − k)/2n] many lines. Since w ≤ n, this bound is useless.

At this point, we need to find some slack in the argument. The culprit is that whereas the probability
that a random substitution x = b kills a clause C is w(C)/2n, all we could say about the size of refuting
φ|x=b is that it decreases by a factor of 1− 1/2n; this lower-bounds w(C)/2n by 1/2n, which could be very
pessimistic in general. This suggests deciding on some threshold d, and only considering clauses of width d
in the argument. Let gd(S, k) be a bound on the width required to refute a kCNF which has a Resolution
refutation in which at most S clauses have width more than d. The same reasoning as before now gives

gd(S, k) ≤ max(gd(1− d/2n)S, k) + 1, gd(S, k), k),

49

with initial condition gd(0, k) = d. In order to turn this into an actual recurrence, we need to introduce
another parameter which decreases in the branch x = b̄; this could be, for example, the number of variables
or the total number of lines. After doing that, we can solve the recurrence much as before, obtaining

gd(S, k) ≤ log(1−d/2n)−1 S + d+ k ≤ 2n

d
lnS + d+ k.

The best choice for d is d =
√

2n lnS, which identifies the first two terms. It leads to the bound

gd(S, k) ≤ 2
√

2n lnS + k.

If φ is a kCNF which has refutation width w, then w ≤ 2
√

2nS+k, and so w−k ≤
√

8n lnS. Therefore every
Resolution refutation of φ contains at least exp[(w− k)2/8n] many lines. This is non-trivial if w �

√
n+ k.

For example, if φ is a Tseitin contradiction of a bounded-degree expander on n vertices then k = O(1) and
w = Ω(n), giving a bound of 2Ω(n).

5.6 Random kSAT

Tseitin contradictions are CNFs with a very particular structure which makes them hard to refute. Perhaps
this is a fluke, and most unsatisfiable kCNFs are easy to refute? In order to address this question formally,
we first need to explain how to sample a random kCNF. The most reasonable way is to fix a given number of
variables n and a given number of clauses m, and sample m random clauses. There are two natural models
of random clauses: one model simply samples k random literals, and the other samples k random literals
corresponding to different variables. We will use the latter model, though for the values of m that we will
consider, the two models are almost identical.

How many clauses do we need to sample so that a random kCNF is unsatisfiable? If α is any fixed
truth assignment and C is a random clause, then the probability that α satisfies C is 1− 2−k. Therefore α
satisfies the CNF with probability (1−2−k)m. If (1−2−k)m = o(2n), then the expected number of satisfying
assignments is o(1), and so with high probability, the kCNF is unsatisfiable. This happens for m ≥ Dkn, for
an appropriate value of Dk.6 We will attempt to prove that a random kCNF is hard to refute in Resolution,
for the largest possible clause density m/n, where n is the number of variables and m is the number of
clauses. We will do so by proving a width lower bound.

In order to prove a width lower bound on refuting a random kCNF φ with n variables and m ≥ Dkn
clauses, we emulate the proof of the width lower bound for Tseitin contradictions. We start by defining
a complexity measure µ for clauses: for a clause C, we define µ(C) as the minimum number of clauses
of φ which imply C. If C is derived from C1, C2 by the cut rule, then µ(C) ≤ µ(C1) + µ(C2), and so
any refutation must contain a clause C such that M/2 ≤ µ(C) ≤ M , where M is an arbitrary parameter
satisfying M ≤ µ(⊥).

The next step is to argue that C must be wide. Just as in the case of Tseitin contradictions, we argue
that if S is a minimal set of clauses of φ which imply C, and x is a variable which is mentioned in a unique
clause D ∈ S, then x must appear in φ. Indeed, since x appears only in D, the proof of C cannot use
D, and so C already follows from S \ {D}. Therefore to complete the argument, we need to show that if
M/2 ≤ |S| ≤M then there must be many variables which appear in only one clause in S.

We will now determine the largest number of clauses m (as a function of the number of variables n) for
which we can prove a strong width lower bound for 3CNFs (we leave the case of general k for the reader).
Our calculations will repeatedly use the following two estimates. First, the probability that a clause mentions
only variables in some set of size t is (

t
3

)(
n
3

) ≤ (t
n

)3

.

6The optimal value of D was calculated by physicists using the cavity method [MPZ02, MMZ06]. It is known rigorously
only for large k [DSS22], in which case it coincides with the value computed by the physicists.

50

Second, we will need the following standard estimate on binomial coefficients:(
n

t

)
≤
(en
t

)t
.

Let us start with our first task: showing that µ(⊥) is large, that is, that any small number of clauses is
satisfiable. The standard trick to show that a set S of clauses is satisfiable is to find a matching between the
clauses in S and variables. That is, we will associate with each clause Ci in S a variable xi, in such a way
that different clauses are matched with different variables. We can use xi to satisfy Ci, thus showing that
the clauses in S are satisfiable. We show that a matching exists using Hall’s theorem. This requires us show
that any subset T of S mentions at least |T | variables. If we aim at a bound of µ(⊥) > M , then we need
this to hold for all subsets T of size at most M .

The probability that a subset of size t mentions fewer than t variables is at most
(
n
t−1

)
(t−1
n)3t. Hence the

probability that our 3CNF contains such a bad subset is at most(
m

t

)(
n

t

)(
t

n

)3t

≤
(
em

t
· en
t
· t

3

n3

)t
=

(
e2mt

n2

)t
.

We need this number to be small, which requires mt� n2, that is, t� n2/m. Roughly speaking, this shows
that µ(⊥)� n2/m with high probability.

Second, we need to show that every small set of clauses contains many variables which are mentioned
exactly once, a phenomenon known as unique expansion. The more familiar condition is expansion, which
requires every small set S of clauses to mention a number of variables proportional to its size, say at least
λ|S|. How many of these neighbors of S must be unique? If there are κ|S| unique neighbors then each of the
other (λ − κ)|S| neighbors appears at least twice. Since every clause mentions exactly three variables, this
shows that κ|S|+ 2(λ− κ)|S| ≤ 3|S|, and so κ ≥ 2λ− 3. In other words, in order to get unique expansion,
we need expansion more than 3/2.

The probability that there exists a subset of size t which mentions fewer than λt variables is at most(
m

t

)(
n

λt

)(
λt

n

)3t

≤
(
em

t
· e

λnλ

λλtλ
· λ

3t3

n3

)t
=

(
Cλ

mt2−λ

n3−λ

)t
,

where Cλ is some constant depending on λ; since λ ≤ 3, we can replace it by a universal constant. For this
to be small, we need mt2−λ � n3−λ.

We are aiming at some constant unique expansion κ, which requires us to choose λ = 3/2 + κ/2. Our
width lower bound works for a parameter M whenever both parts of the argument work: every subset of
size t ≤ M mentions at least t variables, and every subset of size t ≤ M mentions at least λt variables.
The second condition is stronger, and requires M2−λ � n3−λ/m, that is, M1/2−κ/2 � n3/2−κ/2/m. Since
(1/2−κ/2)−1 ≈ 2(1+κ), this holds roughly when M � n(3−κ)(1+κ)/m2(1+κ) ≈ n3+2κ/m2+2κ. The resulting
width lower bound is κM/2, which corresponds to a length lower bound of exp[(κM/2− 3)2/8n]. This lower
bound is meaningful whenever M2 � n, and it is exponential whenever M2 � n1+ε for any ε > 0 (here by

exponential we mean any bound of the form 2Ω(nδ)).
Let us now be even rougher with our estimates, ignoring polynomial factors in nκ. The maximum value

of M we can use is n3/m2 (we obtain this from n3+2κ/m2+2κ by neglecting κ). For this to be non-trivial
we need m � n3/2. In order to get an exponential lower bound we need M2 � n, which translates to
n6/m4 � n and so m� n5/4. Bringing back the factors which we removed, this technique works whenever
the number of clauses is at most n5/4−ε, for any ε > 0.

We can improve on this analysis by giving a better bound on the width of a clause in terms of its µ-
complexity.7 Suppose that S is a minimal set of clauses of φ which imply the clause C. Substitute variables
for the variables in C so that C becomes false; the resulting set S|C=0 is minimally unsatisfiable.

7This argument is taken from Eli Ben-Sasson’s PhD thesis [BS01].

51

If all subsets T ⊆ S|C=0 mentioned at least |T | variables, then S|C=0 would be satisfiable by Hall’s
theorem (we used this argument above to show that no small set of clauses is contradictory). Hence there
must be some such subset T which mentions fewer than |T | variables. If we choose T to be maximal, then
by maximality, any subset R ⊆ S|C=0 \T must mention at least |R| variables, and so S|C=0 \T is satisfiable.
Thus T must be unsatisfiable. Since S|C=0 was minimally unsatisfiable, it must be that T = S|C=0, and so
S|C=0 mentions fewer than |S| variables. We conclude that S mentions fewer than |S|+ w(C) variables.8

Now suppose that µ(C) ≤ M , and that every subset of at most M clauses has expansion at least λ,
which happens (with high probability) as long as M2−λ � n3−λ/m. If S is a minimal set of clauses of φ
implying C then on the one hand, S mentions at least λ|S| variables, and on the other hand, it mentions at
most |S|+ w(C) variables. The width of C is thus at least (λ− 1)|S|.

Our previous proof now works out as long as λ ≥ 1 + κ for some κ > 0, which is the analog of unique
expansion (compare this with the earlier condition λ ≥ 3/2 + κ/2). The condition on M is now M1+κ �
n2+κ/m. Ignoring factors polynomial in nκ, we can take M ≈ n2/m. In order to get an exponential lower
bound we still need M2 � n, which translates to n4/m2 � n and so m� n3/2. This is the best value of m
currently known.

Finally, let us check what happens if instead of 3CNFs, we consider kCNFs. The probability that a
subset of size t mentions fewer than λt variables is at most(

m

t

)(
n

λt

)(
λt

n

)kt
≤
(
em

t
· (en)λ

(λt)λt
· (λt)k

nk

)t
=

(
Cλ,t

mtk−1−λ

nk−λ

)t
.

We need this number to be small, and so mtk−1−λ � nk−λ. Roughly speaking, λ ≈ 1, and so this works
for t up to roughly (nk−1/m)1/(k−2). This is our value of M . In order to get a meaningful bound we need
M2 � n, which translates to (nk−1/m)2 � nk−2, and so m� nk/2.

5.7 Certifying unsatisfiability

We have just seen that even though a random kCNF with Ckn clauses is unsatisfiable with high probability,
Resolution needs an exponential number of lines to refute a random kCNF even with roughly nk/2 clauses.
It is not known whether Resolution can refute random kCNFs with nk/2 clauses. However, there are other
proofs systems which are able to refute such kCNFs, notably TC0-Frege (described below); and moreover,
such proofs can be found efficiently.

Refuting random 4CNFs We start by describing an approach to refuting random 4CNFs due to Goerdt
and Krivelevich [GK01]; the same approach works for refuting random kCNFs whenever k is even.

Given a random 4CNF ϕ with n variables and m clauses, the idea is to show that if y is a satisfying
assignment then:

1. y contains fewer than n/2 many false variables.

2. y contains fewer than n/2 many true variables.

Together, this implies that no y can exist.
We know that the all-false assignment is almost certainly not a satisfying assignment since ϕ almost

certainly contains a positive clause, that is, a clause of the form xi ∨ xj ∨ xk ∨ x`. This suggests that
positive clauses are an obstruction for y containing many false variables. To make this precise, consider
the hypergraph H whose vertices are the variables, and whose hyperedges are the positive clauses. A set
of vertices is an independent set in H if assigning these variables false does not falsifies any positive clause.
Therefore, we can bound the number of false variables in any assignment y by α(H), the size of the largest
independent set in H.

Bounding independent sets in hypergraphs is hard, but there are several known techniques for bounding
the size of independent sets in graph. The most prominent such technique is due to Lovász [Lov79], and has

8This argument (with C = ⊥) is attributed to Tarsi, see [AL86, Ref. 7].

52

found many applications in combinatorics, chiefly in Erdős–Ko–Rado theory and in coding theory, where it
is behind the celebrated linear programming bound.9 The idea is that if G = (V,E) is a graph and A is a
V × V symmetric matrix with Auv = 1 whenever (u, v) /∈ E, then λ(A), which is the maximum eigenvalue
of A, bounds α(G). Indeed, if S is an independent set of G then on the one hand,

1TSA1S =
∑
u,v∈S

Auv =
∑
u,v∈S

1 = |S|2,

and on the other hand,
1TSA1S ≤ λ(A)1TS1S = λ(A)|S|.

While H is a hypergraph rather than a graph, there is a simple way to construct a graph G out of it.
We take as vertices the set of all ordered pairs of variables, and connect (xi, xj) to (xk, x`) if φ contains the
clause xi ∨ xj ∨ xk ∨ x`; for the sake of analysis, we insist that the variables appear in the clause in this
particular order. If S is the set of variables assigned false in α then S × S is an independent set in G, and
so |S| ≤

√
α(G).

The next step is to construct an appropriate matrix A. If {u, v} is not an edge then we have to choose
Auv = 1; this includes the diagonal. What should we put in A if {u, v} is an edge? In view of applying
results from random matrix theory, we choose a value −α that results in E[Auv] = 0 for off-diagonal entries.
Roughly speaking, G contains m/16 random edges, which is a p-fraction for p ≈ m/8n4 (since there are
roughly n4/2 potential edges). The value α should satisfy 1− p = pα, and so α = (1− p)/p.

What can we say about the eigenvalues of A? To figure out, let us consider the trace of A2. On the one
hand, this is the sum of the squares of the eigenvalues of A. On the other hand, it is equal to the sum of
squares of entries of A. The expected square of an off-diagonal entry Aij , which is also its variance σ2, is

σ2 = E[A2
ij] = (1− p) · 12 + p · α2 = 1− p+

(1− p)2

p
=

1− p
p

.

Therefore the sum of the squares of the eigenvalues of A is approximately 1−p
p n4 in expectation. Since there

are n2 such eigenvalues, we expect the eigenvalues of A to scale like
√

1−p
p n4/n2 =

√
1−p
p n. The classical

semicircle law implies (under some assumptions on p) that if we plot the density of the eigenvalues of A,
then in the limit we get a semicircle whose endpoints are ±2σn (here n is the square root of the number
of vertices). Füredi and Komlós [FK81] proved something stronger (again, under some assumptions on p):
with high probability, there are no eigenvalues beyond the strip ±(1 + o(1))2σn.

Backing out, our work so far shows that with high probability, we can efficiently certify that α(G) . 2σn.
The corresponding bound on the number of variables assigned false in y is

√
α(G). Since we want to show

that fewer than half the variables are assigned false in y, we need 2σn � n2/4, and so σ2 � (n/8)2.

Substituting σ2 = 1−p
p and recalling that p = m/8n4, we need n4

m � n2 (ignoring constant factors) and so

m� n2.
Recapping, we have shown that if m� n2 then we can show (with high probability) that every satisfying

assignment of φ contains fewer than n/2 variables assigned false, since our spectral bound shows that
α(G) < n2/4. Similarly, with high probability we can show that every satisfying assignment of φ contains
fewer than n/2 variables assigned true, and so no satisfying assignment exists.

Our certification procedure requires us to bound the maximum eigenvalue of the matrix A; in fact, it
suffices to bound its spectral radius, which is the maximum magnitude of an eigenvalue. This is a standard
problem in numerical analysis, with several practical solutions, typically based on the power method. Since
the numbers involved are not necessarily rational, when implementing these procedures, computers use
floating-point arithmetic, which involves certain approximations. Using techniques from numerical analysis,
we can carefully keep track of the resulting errors, and show that polynomial precision suffices to obtain a
rigorous bound on the spectral radius, which is good enough for our purposes.

9In Erdős–Ko–Rado theory, it is common to name this bound after Hoffman [Hae21]. The linear programming bound is due
to Delsarte [Del73]. Its connection to the Lovász bound was pointed out by Schrijver [Sch79].

53

The transcript of an algorithm which bounds the maximum eigenvalue of A (as well as the maximum
eigenvalue of the corresponding matrix for negative clauses) thus provides a certificate of unsatisfiability,
which can be checked by an efficient algorithm.

It seems unlikely that we can convert such a certificate into a Resolution proof. Müller and Tza-
meret [MTz14] showed how to translate this kind of certificate into a proof in the stronger system TC0-Frege,
which is still quite weak. Whereas proofs in Resolution consist of a sequence of clauses, proofs in TC0-Frege
consist of a sequence of TC0 circuits, that is, bounded depth circuits with threshold gates, and have deriva-
tion rules that correspond to the semantics of the gates. To certify that A has a small maximum eigenvalue,
Müller and Tzameret use an approximate eigendecomposition of A, using a polynomial number of bits of
precision.10

What happens for kCNFs for other values of k? If k is even, then we can convert the k-uniform hypergraph
H into a graph G on nk/2 vertices. If there are m clauses then the density is p ≈ m/nk and so σ2 ≈
1/p ≈ nk/m. Since A has nk/2 many rows and columns, the bound on its maximum eigenvalue is of order√
σ2nk/2 ≈ n3k/4/

√
m. This needs to be at most (n/2)k/2, that is n3k/4/

√
m� nk/2, and so m� nk/2.

Adaptation to random 3CNFs When k is odd, we cannot split each clause into two parts of width k/2.
We could split the clauses into two unequal parts, but then instead of a graph we get a bipartite graph.
Friedman and Goerdt [FG01, FGK05], whose approach was later improved by Goerdt and Lanka [GL03],
suggested rectifying this using the following observation, which we illustrate in the specific case of k = 3. If
we started with roughly n3/2 clauses, then we expect to have roughly (n3/2/8)2/n = n2/64 pairs of clauses
of the form

(xi ∨ xj ∨ z), (xk ∨ x` ∨ z̄).

We can resolve the pairs to obtain about n2/64 clauses of the form xi ∨ xj ∨ xk ∨ x`, thus reducing to the
situation of random 4SAT (in practice, we need somewhat more than n2/64 clauses, so we need to start with
somewhat more than n3/2 clauses).

Unfortunately, the resulting clauses do not have the correct distribution. For each variable z, we expect
to have roughly n1/2/8 clauses of the type xi ∨ xj ∨ z and a similar number of clauses the type xk ∨ x` ∨ z̄.
The n resolvents that we get are some sort of Cartesian product of these two lists. In order to mix them
better, when constructing the graph G, we assign pairs to edges in an alternate fashion:

(xi ∨ xj ∨ z), (xk ∨ x` ∨ z̄) 7→ {(xi, xk), (xj , x`)}.

(In order to get an undirected graph, we need to allow z to be a negative literal.) It turns out that the
Füredi–Komlós bound still holds, though it needs to be reproved to accommodate this distribution.

A different approach Feige and Ofek [FO07] developed an altogether different approach for certifying
random 3SAT. They observed that if an assignment y satisfies a clause `1∨`2∨`3, then either `1⊕`2⊕`3 = 1
or `1, `2, `3 are not all equal (or both). Now a random assignment satisfies about 1/2 the clauses in the first
sense, and about 3/4 of the clauses in the second sense. Furthermore, it satisfies about half the literals in
each clause.

Suppose for the moment that this was the case for all assignments (which happens when there are enough
clauses). Given a truth assignment, if the fraction of clauses with i ∈ {0, 1, 2, 3} satisfied literals is ci, then
c1 + c3 . 1/2, c1 + c2 . 3/4, and c1 + 2c2 + 3c3 ≈ 3/2. This allows us to bound the fraction of satisfied
clauses c1 + c2 + c3, by considering the correct linear combination of the above inequalities:

c1 + c2 + c3 =
c1 + c3

4
+
c1 + c2

2
+
c1 + 2c2 + 3c3

4
.

7

8
,

as expected.
This reduces the certification task to three easier certification tasks:

10Müller and Tzameret do not attempt to show that this decomposition can be found in polynomial time, but this seems
likely.

54

1. Show that every assignment satisfies c1 + c3 . 1/2.

2. Show that every assignment satisfies c1 + c2 . 3/4.

3. Show that every assignment satisfies c1 + 2c3 + 3c3 . 3/2.

There is slack in our calculations, and we use it to simplify our first task: we will only prove that
c1 + c3 . 1.

No assignment satisfies almost all clauses as XOR The idea is to reduce this to a similar certi-
fication task on 2XOR (compare this to the reduction from 3CNF to 4CNF considered above). Given two
clauses `i′ ⊕ `j ⊕ `k = 1 and `i′′ ⊕ `j ⊕ `k = 1, we can deduce the clause `i′ ⊕ `i′′ = 0, that is, `i′ = `i′′ . If
we start with m clauses, then we end up with m2/4n2 clauses.

If the original instance were almost satisfiable as 3XOR, then the new instance would be almost satisfiable.
This corresponds to a cut containing almost all edges in the graph whose vertices are the 2n literals, and in
which each clause `i′ = `i′′ corresponds to an edge (`i′ ,¬`i′′). Altogether, there are m2/4n2 edges. A random
graph on cn edges is almost bipartite for small c, but if m2/4n2 ≥ Cn for large C then it is far enough from
being bipartite for our purposes. Moreover, this can be certified using a simple spectral argument, which
capitalizes on the observation that the number of edges cut by a partition (S, S̄) can be related to 1TSA1S ,
where A is the adjacency matrix.

For this argument to work, we need m2/n2 � n, and so m� n3/2.

No assignment satisfies significantly more than 3/4 of all clauses as NAE Consider a constraint
NAE(`1, `2, `3), stating that `1, `2, `3 are not all equal. If we count the number of disagreements among pairs
of literals, then the constraint is satisfied if the number is 2, and not satisfied if the number is 0. This allows
us to convert the NAE version of φ to an instance ψ of maximum cut, related as follows: 2

3v(φ) = v(ψ), where
v(φ) is the maximum fraction of clauses of φ satisfied as not-all-equal, and v(ψ) is the maximum fraction of
edges which can be cut in ψ. Since ψ is a dense instance (containing 3m edges on n vertices, where m≫ n),
we expect v(ψ) ≈ 1/2, and this can be certified spectrally. In turn, this implies that v(φ) ≈ 3

4 .

Every assignment satisfies an average of 3/2 literals per clause In a random 3CNF, each
variables appears roughly the same number of times positively and negatively, and so each assignment
satisfies roughly half of its appearances. It follows that every assignment satisfies roughly half the literals in
all clauses put together.

Feige–Kim–Ofek witnesses The argument of Feige and Ofek gets stuck at n3/2 clauses due to the way
in which they show that c1 + c2 . 1. Feige, Kim and Ofek [?] introduce a combinatorial certificate based on
parity, and use this to certify random 3CNFs with only n1.4 clauses. However, their combinatorial certificate,
while easy to verify, is hard to find. It thus constitutes a “nondeterministic” certification algorithm.

Müller and Tzameret showed that Feige–Kim–Ofek certificates can also be converted into TC0-Frege
proofs, concluding that TC0-Frege is stronger than Resolution for refuting random 3CNFs. This also explains
why nondeterministic certification algorithms are interesting: they correspond to proofs. The gap between
certification algorithms and nondeterministic certification algorithms is similar to the gap between SAT
solvers and the Resolution proof system.

55

6 Exponential time algorithms for kSAT

Given a kCNF on n variables, we can always determine whether it is satisfiable by going over all 2n truth
assignments. Can we do better? The exponential time hypothesis (ETH) states that no algorithm for kSAT
can run in 2o(n) time. The exponential time hypothesis can be used to prove many other hardness results.
Roughly speaking, to show a lower bound on a problem P , we reduce kSAT to P , and deduce that a too-good
algorithm for P would refute ETH. The reduction often takes exponential time, and so the exponential lower
bound on kSAT implies a polynomial lower bound on P .

The exponential time hypothesis is qualitative in nature. It leaves a gap between 2o(n), which is ruled
out, to the trivial 2n algorithm. It is natural to conjecture a 2n lower bound, but it turns out that for every
constant k, we can actually improve on this exponentially. We describe two such algorithms in this section,
one due to Schöning [Sch02], the other due to Paturi, Pudlák and Zane [PPZ99], and known as the PPZ
algorithm.

The strong exponential time hypothesis (SETH) is the next best thing: it states that for every δ > 0 we
can find some constant k such that solving kSAT requires time 2(1−δ)n. This hypothesis is important in
the recently emerging area of hardness in P (also known as fine-grained complexity), which aims at proving
sharp lower bounds for problems in P.

All algorithms we present work in time O∗((2 − Ω(1/k))n) on kCNFs (the O∗ notation hides factors
polynomial in n and in the input length). Vyas and Williams [VW19] showed that the PPZ algorithm
works in time O∗((2 − Ω(log k/k))n) on random kCNFs whose clause density is close to the satisfiability
threshold. Lincoln and Yedidia [LY20] showed that a modification of Schöning’s algorithm works in time
O∗((2− Ω(log2 k/k))n) in the same setting.

6.1 Schöning’s algorithm

The first algorithm we present is due to Schöning [Sch02]. For concreteness, we will first describe Schöning’s
algorithm in the case of 3SAT, though the analysis for general k is identical. Schöning’s algorithm assumes
that the given 3CNF is satisfiable, and shows how to find a satisfying assignment with high probability in
time αn, for some α < 2. If the 3CNF were unsatisfiable, then after αn steps the algorithm would not find
a satisfying assignment, and so we can conclude that the 3CNF is probably unsatisfiable.

Suppose that we are given a 3CNF φ and an assignment x. If x is satisfying, then we are done: φ is
satisfiable. Otherwise, we can try to improve x. One natural idea is to choose a clause C which x falsifies,
and flip one of its variables. This will satisfy C, but might falsify other clauses.

To track our progress, we will measure our distance to a particular satisfying assignment x∗. Since x
falsifies C while x∗ satisfies C, the two assignments disagree on at least one of the variables in C. With
probability p ≥ 1/3, we flip one of the variables of C on which x and x∗ disagree, thus decreasing the distance
between x and x∗ by 1. With probability 1 − p, we flip a variable on which x and x∗ agree, and so their
distance increases by 1.

In the worst case, p = 1/3, and so on average, x gets farther away from x∗. Nevertheless, we will see that
there is some small but non-negligible probability that a few iterations of this process succeed in “correcting”
x to the assignment x∗.

Let d be the initial distance between x and x∗; if we choose x at random, then d ∼ Bin(n, 1/2). If we
run the random correction process outlined above for d or more steps (n steps suffice), then it corrects x to
x∗ with probability at least (1/3)d. Therefore the algorithm succeeds with probability at least

E
d∼Bin(n,1/2)

[
1

3d

]
=

(
E

b∼Ber(1/2)

[
1

3b

])n
=

(
1

2
· 1 +

1

2
· 1

3

)n
=

(
2

3

)n
.

This analysis insists that we always choose a correct variable. We can obtain a better estimate by allowing
the algorithm to make wrong choices. We can model the distance from x to x∗ as a random walk. The starting
point is the initial distance d between x and x∗, which has distribution d ∼ Bin(n, 1/2). Assuming the worst
case (an assumption which we justify below), at every step the distance decreases by 1 with probability 1/3,

56

and increases by 1 with probability 2/3. Ignoring the fact that the distance can be at most n (which is in
our favor — as the distance gets very close to n, we obtain better bounds on p), this is just a biased random
walk on the line. Denoting by pi the probability that the walk ever reaches the origin if it starts at i, we get
the recurrence

pi =
1

3
pi−1 +

2

3
pi+1, p0 = 1, lim

i→∞
pi = 0.

This is a homogeneous recurrence relation with constant coefficients. The roots of the characteristic poly-
nomial (2/3)x2 − x+ (1/3) are easily calculated: 1, 1/2. Therefore pi = A(1/2)i + B. Using the two initial
conditions, we easily determine that B = 0 (due to the limit at infinity) and that A = 1 (due to the value
of p0), and so pi = 1/2i.

How long does it take the random walk to reach the origin? After (say) Cn steps, where C is a large
enough constant, the walk is expected to be at position at least (2/3− 1/3)Cn = (C/3)n, and so it is very
likely to be at position (say) at least (C/4)n; in fact, this will continue to hold from this point on, and
combining tail bounds with the union bound (details appear below), we can conclude that if the random
walk ever reaches the origin, then it is very likely to happen within the first Cn steps. This suggests the
following procedure:

1. Choose an initial assignment x at random.

2. Run the random correction process for Cn steps.

If the random correction process succeeds in finding a satisfying assignment, then φ is satisfiable. If the
initial distance between x and x∗ is d, then this happens with probability at least roughly 1/2d (this is only
a lower bound, since the process could end at a satisfying assignment which is different from x∗). Since
d ∼ Bin(n, 1/2), the procedure succeeds with probability

E
d∼Bin(n,1/2)

[
1

2d

]
=

(
E

b∼Ber(1/2)

[
1

2b

])n
=

(
1

2
· 1 +

1

2
· 1

2

)n
=

(
3

4

)n
.

Therefore, if φ is satisfiable and we repeat this procedure about (4/3)n many times, it is likely to find a
satisfying assignment.

The final algorithm thus repeats the procedure about (4/3)n many times. If one of the runs ends at
a satisfying assignment, we know that φ is satisfiable, and otherwise, we guess that it is not satisfiable.
Choosing parameters carefully, we can ensure that the answer is correct with high probability. Since the
procedure runs in polynomial time, the overall running time is O∗((4/3)n) (the notation O∗ hides polynomial
factors in n).

If the input is a kCNF rather than a 3CNF, then the only thing that changes is the lower bound on the
probability p: now it is only 1/k. The characteristic polynomial (1−1/k)x2−x+ 1/k now has the two roots
1, 1/(k − 1), and so pi = 1/(k − 1)i. The success probability of the procedure is now(

1

2
· 1 +

1

2
· 1

k − 1

)n
=

(
k

2(k − 1)

)n
,

and so the running time is O∗((2− 2/k)n).

More details: coupling Above we have assumed that p = 1/3 always, an assumption which isn’t justified.
For example, if x is the complement of x∗, then p = 1. Here is why the argument is valid nevertheless. Let
dt be the distance between x and x∗ after t steps (we stop at dT = 0), and let pt be the probability that
dt+1 = dt − 1; thus pt ≥ 1/3.

Given d0, we can sample d0, . . . , dT together with an infinite sequence e0, e1, . . . as follows. We start with
e0 = d0. If dt > 0, then we sample dt+1 and et+1 in a coupled way, as follows:

1. With probability 1/3: let dt+1 = dt − 1 and et+1 = et − 1.

57

2. With probability pt − 1/3: let dt+1 = dt − 1 and et+1 = et + 1.

3. With probability 1− pt: let dt+1 = dt + 1 and et+1 = et + 1.

We sample eT+1 and beyond using the rule et+1 = et − 1 with probability 1/3 and et+1 = et + 1 with
probability 2/3.

By construction, dt ≤ et for all t ≤ T , and (et)
∞
0 is precisely the random walk with constant bias p = 1/3

considered above. If et = 0 then ds = 0 for some s ≤ t, and in particular, if the probability that et hits
zero within Cn steps is (roughly) (3/4)n, then the probability that dt hits zero within Cn steps is at least
(roughly) (3/4)n.

More details: number of steps Above we claimed that it is extremely unlikely that the biased random
walk hits zero after Cn steps or more, for large enough C. To show this, we need to use a celebrated large
deviation bound known as the Chernoff bound.

If the walk starts at d, then after T steps, it is found at position

d+ T − 2Bin(T, 1/3) ≥ T − 2Bin(T, 1/3).

Let X be the value of the binomial random variable Bin(T, 1/3) appearing in the above expression. If
X < T/2 then the random walk does not hit zero at step T . Chernoff’s bound, in one form, states that

Pr[X ≥ T/2] = Pr[X ≥ 3
2 E[X]] ≤ e−E[X]/10 = e−T/30.

Applying the union bound, we see that the random walk hits zero at some step T ≥ Cn with probability at
most

∞∑
T=Cn

e−T/30 =
e−Cn/30

1− e−1/30
≤ 31e−Cn/30.

Choosing C = 30, this probability is much smaller than 2−n, and so the probability that the random walk
hits zero within the first Cn steps is at least 2−d − 2−n ≥ 2−d/2, which suffices for the analysis (instead of
(3/4)n we get (3/4)n/2).

The same argument also shows that limi→∞ pi = 0. In fact, it shows that pT ≤ 31e−T/30, since a random
walk starting at T cannot hit zero before step T .

Derandomization Dantsin, Goerdt, Hirsch, Kannan, Kleinberg, Papadimitriou, Raghavan and Schöning [DGH+02]
showed how to derandomize Schöning’s algorithm, albeit with a loss in the running time. This is important
since the ETH and SETH conjectures are about deterministic algorithms. For concreteness, we describe the
derandomization for 3CNFs, though the general case is identical.

Schöning’s algorithm has two random components: the random choice of x, and the random choices
involved in the random correction process, namely the choice of which variable to flip in the chosen clause
(the clause can be chosen deterministically, say the first falsified clause). The starting point is the observation
that we can get rid of the randomness in the second step, if we only aim at a success probability of 3−d

rather than 2−d, where d is the distance between x and some fixed satisfying assignment x∗.
Recall that 3−d is a lower bound on the probability that during the the random correction process, we

always choose a variable at which x and x∗ disagree, in which case the process ends after exactly d steps. If
we know that x and x∗ are at distance at most d, this allows us to find x∗ given x in time O∗(3d). To do
this, we simulate d iterations of the random correction procedure, enumerating over all 3d possible choices
of randomness.

This suggests the following strategy. We zero in on a value of d such that there is a small set C which
contains a point at distance at most d from every truth assignment. For each x ∈ C, we run the derandomized
correction procedure. The overall running time is O∗(|C| · 3d).

A set C which contains a point at distance at most d from every point in {0, 1}n is known as a covering
code of radius d. Every x ∈ C is at distance at most d from

(
n
≤d
)

points in {0, 1}n, and so |C| ≥ 2n/
(
n
≤d
)

58

(this is the sphere packing bound). Conversely, there are covering codes which almost attain this bound (up
to a poly(n) factor), and these can be found in time O∗(|C|) (here O∗ hides poly(n) factors).

It remains to choose a value of d which minimizes the running time O∗(|C| · 3d). Up to poly(n), factors,

1

|C| · 3d
&

(
n
d

)
3−d

2n
.

If we sum the right-hand side over all d, we obtain

E
d∼Bin(n,1/2)

[3−d] = (3/4)n.

In particular, there is a value of d such that (
n
d

)
3−d

2n
≥ (3/4)n

n+ 1
.

Moreover, d ≤ n/2, since otherwise the left-hand side is at most 3−n/2, which is a lot smaller than (3/4)n.
Therefore

(
n
d

)
and

(
n
≤d
)

are the same up to poly(n) factors, and so for this value of d, the running time is

O∗((4/3)n).
We can find the optimal value of d explicitly using the following well-known approximation for the

binomial coefficient: (
n

αn

)
≈ 2(1−h(α))n,

where h(α) = −α log2 α − (1 − α) log2(1 − α) is the binary entropy function. If d = αn then the running
time of the algorithm is roughly

2n(
n
αn

)3αn ≈ 2h(α)n3αn.

To find the optimal setting, define g(α) = 1− h(α) + α log2 3, and minimize g. Straightforward calculation
gives g′(α) = log2

1−α
α + log2 3, and so we need 1−α

α = 3, resulting in α = 1/4. We then have 2g(1/4) = 3/2,
resulting in a running time of O∗((3/2)n), compared to O∗((4/3)n) for the randomized algorithm.

If the input is a kCNF rather than a 3CNF, then instead of 3αn we have kαn. The function g is replaced
by gk(α) = 1− h(α) +α log2 k, which is minimized when 1−α

α = k, resulting in α = 1/(k+ 1). We then have

2gk(1/(k+1)) = 2 ·
(

1

k + 1

)1/(k+1)(
k

k + 1

)k/(k+1)

· k1/(k+1) =
2

k + 1
· kk/(k+1) · k1/(k+1) =

2k

k + 1
.

Therefore the running time is O∗((2− 2/(k + 1))n), compared to O∗((2− 2/k)n) in the randomized case.

Moser and Scheder [MS11] gave an improved derandomization which results in a O∗((2 − 2/k + ε)n)
algorithm for every ε > 0. Roughly speaking, they were able to run the random correction procedure for
more steps using a k-ary covering code to reduce the number of variable choices which need to be considered.

6.2 PPZ

Paturi, Pudlák and Zane [PPZ99] came up with a different idea for a kSAT algorithm. While the resulting
algorithm is not better than Schöning’s, further improvements of it are. Later on we will briefly describe
one such improvement, the PPSZ algorithm [PPSZ05] (adding Saks to the list of authors).

Let us now proceed to describe the PPZ algorithm. Instead of describing a satisfiability algorithm, we will
describe an algorithm which, given a satisfiable kCNF, finds a satisfying assignment with high probability.
Such an algorithm can be turned into a satisfiability algorithm, just as we did for Schöning’s algorithm.

Intuitively, the hardest satisfiable instances of kSAT are those in which there is a unique satisfying
assignment x∗; these are the instances where the analysis of Schöning’s algorithm is the tightest. (The

59

isolation lemma, discussed in Section 7, makes this intuition precise, by reducing SAT to the case in which
the satisfying assignment is unique.) This means that if we flip any of the variables in x∗ we must falsify
some clause. In other words, for every variable xi there is a clause Ci mentioning either xi or x̄i, in which
the xi literal is the unique literal satisfying Ci in x∗.

Imagine now an exhaustive search procedure which goes over the variables x1, . . . , xn in some order. That
is, for each xi, we try both truth values in a recursive fashion. Consider the branch in which we guessed
the values of all variables correctly (according to x∗). Suppose that among the variables appearing in Ci,
the variable xi is reached last. In this case, when reaching Ci, all other literals in Ci are false, and so the
value of xi is forced; this happens with probability 1/k over the random order. We expect to save about n/k
guesses in this way. This suggests the following algorithm, whose input is a kCNF φ:

1. Choose a random assignment y1, . . . , yn ∈ {0, 1}n.

2. Go over the variables x1, . . . , xn in a random order. For each xi:

(a) If xi is the only literal in some clause of φ, set it in the way that satisfies the clause.

(b) Otherwise, set xi to yi.

(c) Simplify φ by substituting the value of xi. For example, if xi is set to true, then remove all clauses
containing xi, and remove x̄i from all clauses containing this literal.

(d) If one of the clauses becomes empty, give up.

3. Output the current assignment.

If we reach the last step, then we output a satisfying assignment. What is the probability that this
happens, that is, that we always set xi to x∗i ? For each xj , if xj is the last variable of Cj in the random
order, and xk = x∗k for all previously set variables xk, then we always set xj correctly, since its value is
forced. Otherwise, we set xj correctly with probability 1/2. Hence, denoting by N the number of variables
xi which appear last out of all variables in Ci in the random order, the probability that the algorithm outputs
a satisfying assignment is

E[2−(n−N)] ≥ 2−(n−E[N]) = 2−(n−k/n) = 2−(1−1/k)n,

using Jensen’s inequality in the first inequality. This means that we need to repeat the algorithm 2(1−1/k)n

times, resulting in a running time of O∗((21−1/k)n). When k = 3, we have 21−1/k ≈ 1.587 > 4/3, so
this is worse than Schöning’s algorithm. What happens for other k? For PPZ to beat Schöning, we need
2− 2/k > 21−1/k, and so 1− 1/k > 2−1/k, hence (1− 1/k)k > 1/2, which contradicts the well-known bound
(1− 1/k)k < 1/e. Thus Schöning is always better.

Non-unique case Before describing how to improve the performance of the algorithm, let us see what
happens when there is more than one satisfying assignment. In the case of a unique satisfying assignment,
for every variable xi there was a clause Ci in which the xi-literal was the unique satisfying literal. This is
not necessarily the case in general: for example, xi could not appear in the CNF at all. What we can say
for sure is that if x∗ is sensitive to flipping xi, that is, if flipping xi results in an assignment which is not
satisfying, then such a clause Ci does exist. Denoting by s(x∗) the number of sensitive variables (known as
the sensitivity), the same analysis as before shows that PPZ recovers the assignment x∗ with probability

E[2−(n−N)] ≥ 2−(n−E[N]) = 2−(n−s(x∗)/k).

Therefore the success probability is

2−n
∑
x∗

(21/k)s(x
∗).

where the sum goes over all satisfying assignments.

60

It turns out that we can bound the sum inductively. For an arbitrary Boolean function f , let

S(f) =
∑
x

f(x)(21/k)s(f,x),

where s(f, x) is the number of coordinates i such that f(x⊕i) 6= f(x). Let S(m) be the minimum value of
S(f) over all f : {0, 1}m → {0, 1} which are not identically zero; in our case, this nontriviality assumption
corresponds to the input kCNF being satisfiable. Clearly S(f) ≥ S(f |xm=0)+S(f |xm=1). However, this does
not mean that S(m) ≥ 2S(m − 1), since one of the functions f |xm=0, f |xm=1 could be identically zero. If
f |xm=b is identically zero then S(f) = 21/kS(f |xm=b̄), since all satisfying assignments of f |xm=b̄ are sensitive
in the direction of xm. Therefore

S(m) ≥ min(2S(m− 1), 21/kS(m− 1)) = 21/kS(m− 1).

Since S(1) = min(1 + 1, 21/k) = 21/k, this shows that S(m) ≥ 2m/k, which is tight for f with a unique
satisfying assignment. Therefore the success probability of PPZ is always at least

2−nS(n) ≥ 2−n2n/k = 2(1−1/k)n,

matching exactly what we got in the case of a unique satisfying assignment.

PPSZ The PPSZ algorithm [PPSZ05] improves on PPZ by making it easier for variables to be forced. In
PPZ, a variable xi is forced if it appears in a unit clause (a clause containing a single literal). In PPSZ,
we run Resolution up to width w, trying to see if it implies a value for xi. If w = o(n/ log n), then due to
automability of bounded width Resolution (see Section 5.3), the procedure for checking whether xi is forced
runs in subexponential time 2o(n), which is “free” in this context (it actually suffices to take any w = ω(1)
for the analysis to go through). This improves the probability that xi is forced from 1/k to roughly

1

k − 1

∞∑
j=1

1

j(j + 1
k−1)

.

For example, when k = 3, we improve 1/3 to 2−ln 4 ≈ 0.613706, resulting in a running time ofO∗(2(ln 4−1)n) ≈
1.307n, which is better than Schöning’s (4/3)n. In fact, the original paper only proved this bound in the
case of a unique satisfying assignment, and only later on Hertli [Her14] extended the analysis to the general
case. The analysis was further improved by Scheder [Sch21]. Other authors have slightly improved on both
Schöning and PPSZ (see Scheder’s paper for pointers to the literature).

61

7 Isolation lemma and approximate counting/sampling

The worst case for both algorithms described in Section 6 is when the input CNF has a unique satisfying
assignment, leading to the conjecture that such instances are worst-case. The corresponding promise problem
is Unique-SAT, in which we have to tell apart unsatisfiable CNFs from ones with exactly one satisfying
assignment.

In Section 1.4 we showed how to find a satisfying assignment using a satisfiability oracle, a process known
as a search-to-decision reduction. The process is sequential in nature: we first figure out the value of x1,
then the value of x2, and so on. We can parallelize the process when the satisfying assignment is unique:
for each variable xi in parallel, we can determine its value by fixing xi to 0 and asking a satisfiability oracle
whether this results in a satisfiable instance or not. This approach only works when the solution is unique:
for example, the CNF corresponding to x1 ⊕ x2 has solutions with x1 = 0 or x2 = 0, but not both.

Both of these applications motivate the isolation lemma, due to Valiant and Vazirani [VV86], which
gives a reduction from SAT to Unique-SAT. The same ideas can also be used to approximately count the
number of satisfying assignments, which can in turn be used to sample an approximately uniform satisfying
assignment.

A different type of isolation lemma was used by Mulmuley, Vazirani and Vazirani [MVV87] to give a
parallel algorithm for perfect matching. The idea there is to add random weights in order to make the
minimum weight perfect matching unique. Noam Ta-Shma [Ta-15] gave a very short proof of this isolation
lemma.

The notes below incorporate material from lecture notes of Ryan O’Donnell and (separately) Dana
Moshkovitz.

7.1 Unique-SAT and the isolation lemma

Suppose that φ is a satisfiable CNF on n variables with M satisfying assignment. In order to reduce the
number of satisfying assignments, we need to cut down the number of satisfying assignments by a factor of
M . We can do so using a good hash function h : {0, 1}n → {1, . . . ,M} by asking for a satisfying assignment
x which hashes to some random value. In order to incorporate h into the CNF, we need h to be efficiently
computable.

If h is a uniform hash function, meaning that given a random assignment, the output is uniformly random,
then M must be a power of 2. Therefore we slightly adjust our idea, using a hash function whose range is
K ≈M , where K is a power of 2.

If h is a uniformly random function and we choose H ∈ {1, . . . ,K} at random, then the probability that
φ ∧ “h(x) = H” has a unique satisfying assignment is

M

K

(
1− 1

K

)M−1

,

suggesting that we choose K to be the smallest power of 2 exceeding M .
Uniformly random hash functions cannot be computed efficiently, and so we cannot use them. Instead, we

have to make do with a pseudorandom function. The minimal assumption is that for every x, Prh,H [h(x) =
H] = 1/K, but this is not enough: a random constant function satisfies this constraint. The next relevant
assumption is that for every x 6= y, Prh,H [h(x) = h(y) = H] = 1/K2 (or even just close to 1/K2).11 Is this
enough? Under this assumption, the probability that out of the satisfying assignments α1, . . . , αM , only one

11This is slightly weaker than pairwise independence, a property which is commonplace in derandomization since it allows
application of Chebyshev’s inequality.

62

satisfies h(αi) = H, is at least

M∑
i=1

Pr[h(αi) = H]−
M∑
j=1
j 6=i

Pr[h(αi) = h(αj) = H]

 =
M

K
− M(M − 1)

K2
=
M

K

(
1− M − 1

K

)

≥ M

K

(
1− M

K

)
=

1

4
−
(

1

2
− M

K

)2

.

The optimal value of θ = M/K is 1/2, but this requiresM to be a power of 2. Whenever θ < 1, the probability
above will be positive. Doubling K corresponds to halving θ. This always decreases the probability if θ ≤ 1/2.
If θ > 1/2, then this results in an improvement if θ − 1/2 > 1/2 − θ/2, that is, if θ > 2/3. It follows that
for every value of M , the optimal choice of K is the one which leads to θ ∈ [1/3, 2/3], in which case the
probability above is at least 2/9.

One problem with this approach is that we don’t know the optimal value of K. However, there are only
n+O(1) possible values, and we can try each of them. As a result, the reduction only works with probability
Ω(1/n). Is this good enough for reducing SAT to Unique-SAT?

One way to formalize this question is via Unique-SAT oracles. A Unique-SAT oracle gets as input a
SAT instance, returns Yes if it has a unique satisfying assignment, returns No if it is unsatisfiable, and acts
arbitrarily otherwise. In terms of this formalization, we can reduce SAT to Unique-SAT by performing the
reduction above a (large) constant number of times for each value of K. If the original CNF is unsatisfiable,
then the Unique-SAT oracle will always return No, while if the original CNF is satisfiable, the Unique-SAT
oracle will return Yes on one of the runs with the correct value of K, with constant probability. We can
increase the success probability by making more repeats.

In order to complete the description of the reduction, we need to specify a random ensemble of hash
functions with the property that for every x, Prh,H [h(x) = H] = 1/K, and for every x 6= y, Prh,H [h(x) =
h(y) = H] = 1/K2, where K = 2k. We choose a random linear hash function: h(x) = Ax, where A is a
random k × n bit matrix, and arithmetic is performed modulo 2. The output h(x) is a random vector in
{0, 1}k, and accordingly, we choose H uniformly at random from {0, 1}k. The function h can clearly be
computed efficiently, and so the constraint h(x) = H can be encoded using polynomially many clauses (in
fact, O(kn) suffice).

Choosing H at random ensures that Pr[h(x) = H] = 2−k. If x 6= y then in order for both h(x) = H and
h(x) = h(y) to hold, we need h(x) = H as well as h(x⊕ y) = 0. Each element in the vector A(x⊕ y) is the
inner product of a completely random vector (a row of A) with a non-zero vector (x⊕y), and so is uniformly
distributed. Therefore Pr[h(x) = h(y)] = 2−k. Whatever the value of h(x) is, the probability that it equals
H is 2−k, and so Pr[h(x) = h(y) = H] = 2−2k.

Reducing to ⊕SAT What if we want a many-one reduction? We can obtain such a reduction if we replace
Unique-SAT with ⊕SAT, in which the goal is to check whether the given SAT instance has an odd number
of satisfying assignments.

The main observation is that given a CNF φ1 with M1 satisfying assignments and a CNF φ2 with M2

satisfying assignments, we can construct a CNF φ with M1M2 satisfying assignments by simply joining φ1

and φ2 together (taking their conjunction), using disjoint sets of variables.
This suggests that we find a reduction in which an unsatisfiable CNF maps to one with an odd number

of assignments, while a satisfiable CNF maps (with some probability) to one with an even number of
assignments. This is exactly the opposite parity than the Unique-SAT reduction: there, in the unsatisfiable
case, the reduction constructed a CNF with zero satisfying assignments, while in the satisfiable case, the
reduction constructed (with some probability) a CNF with a single satisfying assignment. We can fix this
using a gadget which adds exactly one satisfying assignment to a given CNF φ on the variables x1, . . . , xn:

(y ∧ φ(x1, . . . , xn)) ∨ (y = x1 = · · · = xn = 0).

63

Given a CNF φ, we first apply the Unique-SAT reduction to produce S many CNFs φ1, . . . , φS with the
following promise: if φ is unsatisfiable then so are φ1, . . . , φS , and if φ is satisfiable, then each φi has a unique
satisfying assignment with probability Ω(1/n). Now we add a satisfying assignment to each of φ1, . . . , φS ,
obtaining φ′1, . . . , φ

′
S . Finally, we put all of them together in a single CNF ψ, using dedicated variables for

each φ′i. If φ is unsatisfiable then ψ always has a unique satisfying assignment, whereas if φ is satisfiable
then ψ has an even number of satisfying assignments with probability 1 − (1 − Ω(1/n))S = 1 − e−Ω(S/n),
which can be made exponentially close to 1 by taking S = n2.

We do not know how to construct a deterministic reduction of this sort from SAT to ⊕SAT.

7.2 Approximate counting and sampling

Similar techniques can be used for two natural problems: approximate counting and approximate sampling.
Given a CNF φ, the approximate counting problem asks us to estimate the number of satisfying assignments
of φ, say up to a small multiplicative error. The approximate sampling problem asks us to sample a
satisfying assignment in an approximately uniform way, say each of the M satisfying assignments is sampled
with probability (1± ε)/M (this only makes sense if φ is satisfiable).

As stated, approximate counting is harder than satisfiability, so let us assume that we have a SAT oracle
at our disposal. How do we use it to approximately count the number M of satisfying assignments of a given
satisfiable CNF φ? Recall that for every K = 2k, the reduction in the preceding section constructed a CNF
ψ which has a unique satisfying assignment with probability at least M/K(1 −M/K). In particular, if we
denote by pk the probability that ψ is satisfiable with this setting of k, then

M

K

(
1− M

K

)
≤ pk ≤

M

K
,

the upper bound following from a union bound.
If M = 2m then

1

4
≤ pm+1 ≤

1

2
,

3

16
≤ pm+2 ≤

1

4
,

7

64
≤ pm+3 ≤

1

8
.

Monotonicity shows that pk ≥ 1/4 for all k ≤ m. Hence by estimating pk well enough for all values of k up
to n+ 3, we can determine m (since we can tell apart m+ 2 and m+ 3).

In general, M need not be a power of 2, but similar calculations show that we can estimate it within
some constant factor C (we skip the tedious details).

We can improve the approximation factor using the trick we used when reducing SAT to ⊕SAT: joining
together S copies of φ on disjoint variables, we obtain a CNF with MS satisfying assignments, and so
applying the previous procedure, we obtain a C1/S-approximation of M . For large S, the approximation
ratio is elnC/S ≈ 1 + (lnC)/S, and so we can get a (1 + 1/nD)-approximation, for any constant D, using a
polynomial number of calls to a satisfiability oracle.

Approximate counting with small error allows us to approximately sample. The idea is simple: given
a CNF φ, by substituting x1 = 0 and x1 = 1 we can approximate the numbers of satisfying assignments
M0,M1 with the given value of x1. We choose x1 to be b with probability Mb/(M0 + M1), and continue
to sample the remaining variables in the same way. If our estimates on M0,M1 are good enough, then the
resulting sample will be close to uniform.

This is actually a general reduction from approximate sampling to approximate counting, due originally
to Jerrum, Valiant and Vazirani [JVV86], improved by Bellare, Goldreich and Petrank [BGP00], who showed
how to exactly sample a satisfying assignment.

There is also a reduction in the other direction The rough idea is that by sampling many satisfying
assignments and observing the value of x1, we can estimate the fraction of satisfying assignments with each
value of x1. We then fix x1 to a value at random (with the same proportions), and continue in the same
way. Multiplying the fractions encountered along the way gives an estimate for 1/M .

64

References

[ABI+09] Eric Allender, Michael Bauland, Neil Immerman, Henning Schnoor, and Heribert Vollmer. The
complexity of satisfiability problems: refining Schaefer’s theorem. J. Comput. System Sci.,
75(4):245–254, 2009. doi:10.1016/j.jcss.2008.11.001.

[AFT11] Albert Atserias, Johannes Klaus Fichte, and Marc Thurley. Clause-learning algorithms with
many restarts and bounded-width resolution. J. Artificial Intelligence Res., 40:353–373, 2011.
doi:10.1613/jair.3152.

[AL86] Ron Aharoni and Nathan Linial. Minimal non-two-colorable hypergraphs and minimal unsatis-
fiable formulas. J. Combin. Theory Ser. A, 43(2):196–204, 1986. doi:10.1016/0097-3165(86)
90060-9.

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof
verification and the hardness of approximation problems. J. ACM, 45(3):501–555, 1998.
doi:10.1145/278298.278306.

[AM20] Albert Atserias and Moritz Müller. Automating resolution is NP-hard. J. ACM, 67(5):Art. 31,
17, 2020. doi:10.1145/3409472.

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: a new characterization of
NP. J. ACM, 45(1):70–122, 1998. doi:10.1145/273865.273901.

[AS00] Noga Alon and Benny Sudakov. Bipartite subgraphs and the smallest eigenvalue. Combin.
Probab. Comput., 9(1):1–12, 2000. doi:10.1017/S0963548399004071.

[BCH+96] Mihir Bellare, Don Coppersmith, Johan H̊astad, Marcos Kiwi, and Madhu Sudan. Linearity
testing in characteristic two. volume 42, pages 1781–1795. 1996. Codes and complexity. doi:

10.1109/18.556674.

[BGP00] Mihir Bellare, Oded Goldreich, and Erez Petrank. Uniform generation of NP-witnesses using an
NP-oracle. Inform. and Comput., 163(2):510–526, 2000. doi:10.1006/inco.2000.2885.

[BKM21] Mark Braverman, Subhash Khot, and Dor Minzer. On rich 2-to-1 games. In 12th Innovations
in Theoretical Computer Science Conference, volume 185 of LIPIcs. Leibniz Int. Proc. Inform.,
pages Art. No. 27, 20. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2021.

[BKS04] Paul Beame, Henry Kautz, and Ashish Sabharwal. Towards understanding and harnessing the
potential of clause learning. J. Artificial Intelligence Res., 22:319–351, 2004. doi:10.1613/

jair.1410.

[BLR93] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with applications
to numerical problems. Journal of Computer and System Sciences, 47(3):549–595, 1993. URL:
https://www.sciencedirect.com/science/article/pii/002200009390044W, doi:https://
doi.org/10.1016/0022-0000(93)90044-W.

[Bor75] Christer Borell. The Brunn-Minkowski inequality in Gauss space. Invent. Math., 30(2):207–216,
1975. doi:10.1007/BF01425510.

[BS97] Roberto J. Bayardo and Robert C. Schrag. Using csp look-back techniques to solve real-world
sat instances. In Proceedings of the Fourteenth National Conference on Artificial Intelligence
and Ninth Conference on Innovative Applications of Artificial Intelligence, AAAI’97/IAAI’97,
page 203–208. AAAI Press, 1997.

[BS01] Eli Ben-Sasson. Expansion in Proof Complexity. PhD thesis, Hebrew University, 2001.

65

https://doi.org/10.1016/j.jcss.2008.11.001
https://doi.org/10.1613/jair.3152
https://doi.org/10.1016/0097-3165(86)90060-9
https://doi.org/10.1016/0097-3165(86)90060-9
https://doi.org/10.1145/278298.278306
https://doi.org/10.1145/3409472
https://doi.org/10.1145/273865.273901
https://doi.org/10.1017/S0963548399004071
https://doi.org/10.1109/18.556674
https://doi.org/10.1109/18.556674
https://doi.org/10.1006/inco.2000.2885
https://doi.org/10.1613/jair.1410
https://doi.org/10.1613/jair.1410
https://www.sciencedirect.com/science/article/pii/002200009390044W
https://doi.org/https://doi.org/10.1016/0022-0000(93)90044-W
https://doi.org/https://doi.org/10.1016/0022-0000(93)90044-W
https://doi.org/10.1007/BF01425510

[BSIW04] Eli Ben-Sasson, Russell Impagliazzo, and Avi Wigderson. Near optimal separation of tree-like
and general resolution. Combinatorica, 24(4):585–603, 2004. doi:10.1007/s00493-004-0036-5.

[BSW01] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow—resolution made simple. J. ACM,
48(2):149–169, 2001. doi:10.1145/375827.375835.

[Bul17] Andrei A. Bulatov. A dichotomy theorem for nonuniform CSPs. In 58th Annual IEEE Sympo-
sium on Foundations of Computer Science—FOCS 2017, pages 319–330. IEEE Computer Soc.,
Los Alamitos, CA, 2017. doi:10.1109/FOCS.2017.37.

[CEI96] Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo. Using the Groebner basis algorithm
to find proofs of unsatisfiability. In Proceedings of the Twenty-eighth Annual ACM Symposium
on the Theory of Computing (Philadelphia, PA, 1996), pages 174–183. ACM, New York, 1996.
doi:10.1145/237814.237860.

[Che09] Hubie Chen. A rendezvous of logic, complexity, and algebra. ACM Comput. Surv., 42(1), dec
2009. doi:10.1145/1592451.1592453.

[Dal00] Vı́ctor Dalmau. Computational Complexity of Problems over Generalized Formulas. PhD thesis,
Universitat Politécnica de Catalunya, 2000.

[DDG+17] Roee David, Irit Dinur, Elazar Goldenberg, Guy Kindler, and Igor Shinkar. Direct sum testing.
SIAM J. Comput., 46(4):1336–1369, 2017. doi:10.1137/16M1061655.

[Del73] P. Delsarte. An algebraic approach to the association schemes of coding theory. Philips Res.
Rep. Suppl., (10):vi+97, 1973.

[DGH+02] Evgeny Dantsin, Andreas Goerdt, Edward A. Hirsch, Ravi Kannan, Jon Kleinberg, Christos
Papadimitriou, Prabhakar Raghavan, and Uwe Schöning. A deterministic (2 − 2/(k + 1))n

algorithm for k-SAT based on local search. Theoret. Comput. Sci., 289(1):69–83, 2002. doi:

10.1016/S0304-3975(01)00174-8.

[Din07] Irit Dinur. The PCP theorem by gap amplification. J. ACM, 54(3):Art. 12, 44, 2007. doi:

10.1145/1236457.1236459.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem-
proving. Comm. ACM, 5:394–397, 1962. doi:10.1145/368273.368557.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification theory. J. Assoc.
Comput. Mach., 7:201–215, 1960. doi:10.1145/321033.321034.

[DSS22] Jian Ding, Allan Sly, and Nike Sun. Proof of the satisfiability conjecture for large k. Ann. of
Math. (2), 2022+.

[FG01] Joel Friedman and Andreas Goerdt. Recognizing more unsatisfiable random 3-SAT instances
efficiently. In Automata, languages and programming, volume 2076 of Lecture Notes in Comput.
Sci., pages 310–321. Springer, Berlin, 2001. URL: https://doi.org/10.1007/3-540-48224-5_
26, doi:10.1007/3-540-48224-5_26.

[FGK05] Joel Friedman, Andreas Goerdt, and Michael Krivelevich. Recognizing more unsatisfiable
random k-SAT instances efficiently. SIAM J. Comput., 35(2):408–430, 2005. doi:10.1137/

S009753970444096X.

[FK81] Z. Füredi and J. Komlós. The eigenvalues of random symmetric matrices. Combinatorica,
1(3):233–241, 1981. doi:10.1007/BF02579329.

[FO07] Uriel Feige and Eran Ofek. Easily refutable subformulas of large random 3CNF formulas. Theory
Comput., 3:25–43, 2007. doi:10.4086/toc.2007.v003a002.

66

https://doi.org/10.1007/s00493-004-0036-5
https://doi.org/10.1145/375827.375835
https://doi.org/10.1109/FOCS.2017.37
https://doi.org/10.1145/237814.237860
https://doi.org/10.1145/1592451.1592453
https://doi.org/10.1137/16M1061655
https://doi.org/10.1016/S0304-3975(01)00174-8
https://doi.org/10.1016/S0304-3975(01)00174-8
https://doi.org/10.1145/1236457.1236459
https://doi.org/10.1145/1236457.1236459
https://doi.org/10.1145/368273.368557
https://doi.org/10.1145/321033.321034
https://doi.org/10.1007/3-540-48224-5_26
https://doi.org/10.1007/3-540-48224-5_26
https://doi.org/10.1007/3-540-48224-5_26
https://doi.org/10.1137/S009753970444096X
https://doi.org/10.1137/S009753970444096X
https://doi.org/10.1007/BF02579329
https://doi.org/10.4086/toc.2007.v003a002

[FS02] Uriel Feige and Gideon Schechtman. On the optimality of the random hyperplane rounding tech-
nique for MAX CUT. volume 20, pages 403–440. 2002. Probabilistic methods in combinatorial
optimization. doi:10.1002/rsa.10036.

[FV99] Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic SNP
and constraint satisfaction: a study through Datalog and group theory. SIAM J. Comput.,
28(1):57–104, 1999. doi:10.1137/S0097539794266766.

[GK01] Andreas Goerdt and Michael Krivelevich. Efficient recognition of random unsatisfiable k-SAT
instances by spectral methods. In STACS 2001 (Dresden), volume 2010 of Lecture Notes
in Comput. Sci., pages 294–304. Springer, Berlin, 2001. URL: https://doi.org/10.1007/

3-540-44693-1_26, doi:10.1007/3-540-44693-1_26.

[GL03] Andreas Goerdt and André Lanka. Recognizing more random unsatisfiable 3-SAT instances
efficiently. In Typical case complexity and phase transitions, volume 16 of Electron. Notes Discrete
Math., page 26. Elsevier Sci. B. V., Amsterdam, 2003.

[GW95] Michel X. Goemans and David P. Williamson. Improved approximation algorithms for maxi-
mum cut and satisfiability problems using semidefinite programming. J. Assoc. Comput. Mach.,
42(6):1115–1145, 1995. doi:10.1145/227683.227684.

[Hae21] Willem H. Haemers. Hoffman’s ratio bound. Linear Algebra Appl., 617:215–219, 2021. doi:

10.1016/j.laa.2021.02.010.

[H̊as01] Johan H̊astad. Some optimal inapproximability results. J. ACM, 48(4):798–859, 2001. doi:

10.1145/502090.502098.

[Her14] Timon Hertli. 3-SAT faster and simpler—Unique-SAT bounds for PPSZ hold in general. SIAM
J. Comput., 43(2):718–729, 2014. doi:10.1137/120868177.

[IM99] Kazuo Iwama and Shuichi Miyazaki. Tree-like resolution is superpolynomially slower than DAG-
like resolution for the pigeonhole principle. In Algorithms and computation (Chennai, 1999),
volume 1741 of Lecture Notes in Comput. Sci., pages 133–142. Springer, Berlin, 1999. URL:
https://doi.org/10.1007/3-540-46632-0_14, doi:10.1007/3-540-46632-0_14.

[JVV86] Mark R. Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. Random generation of combinatorial
structures from a uniform distribution. Theoret. Comput. Sci., 43(2-3):169–188, 1986. doi:

10.1016/0304-3975(86)90174-X.

[Kar72] Richard M. Karp. Reducibility among combinatorial problems. In Complexity of computer
computations (Proc. Sympos., IBM Thomas J. Watson Res. Center, Yorktown Heights, N.Y.,
1972), pages 85–103, 1972.

[Kar99] Howard Karloff. How good is the Goemans-Williamson MAX CUT algorithm? SIAM J. Com-
put., 29(1):336–350, 1999. doi:10.1137/S0097539797321481.

[Kho02] Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings of the Thirty-
Fourth Annual ACM Symposium on Theory of Computing, pages 767–775. ACM, New York,
2002. doi:10.1145/509907.510017.

[KKMO07] Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal inapproximability
results for MAX-CUT and other 2-variable CSPs? SIAM J. Comput., 37(1):319–357, 2007.
doi:10.1137/S0097539705447372.

[KMS18] Subhash Khot, Dor Minzer, and Muli Safra. Pseudorandom sets in Grassmann graph have near-
perfect expansion. In 59th Annual IEEE Symposium on Foundations of Computer Science—
FOCS 2018, pages 592–601. IEEE Computer Soc., Los Alamitos, CA, 2018. doi:10.1109/FOCS.
2018.00062.

67

https://doi.org/10.1002/rsa.10036
https://doi.org/10.1137/S0097539794266766
https://doi.org/10.1007/3-540-44693-1_26
https://doi.org/10.1007/3-540-44693-1_26
https://doi.org/10.1007/3-540-44693-1_26
https://doi.org/10.1145/227683.227684
https://doi.org/10.1016/j.laa.2021.02.010
https://doi.org/10.1016/j.laa.2021.02.010
https://doi.org/10.1145/502090.502098
https://doi.org/10.1145/502090.502098
https://doi.org/10.1137/120868177
https://doi.org/10.1007/3-540-46632-0_14
https://doi.org/10.1007/3-540-46632-0_14
https://doi.org/10.1016/0304-3975(86)90174-X
https://doi.org/10.1016/0304-3975(86)90174-X
https://doi.org/10.1137/S0097539797321481
https://doi.org/10.1145/509907.510017
https://doi.org/10.1137/S0097539705447372
https://doi.org/10.1109/FOCS.2018.00062
https://doi.org/10.1109/FOCS.2018.00062

[Kro67] M. R. Krom. The decision problem for a class of first-order formulas in which all disjunctions are
binary. Z. Math. Logik Grundlagen Math., 13:15–20, 1967. doi:10.1002/malq.19670130104.

[Lad75] Richard E. Ladner. On the structure of polynomial time reducibility. J. Assoc. Comput. Mach.,
22:155–171, 1975. doi:10.1145/321864.321877.

[Lov79] László Lovász. On the Shannon capacity of a graph. IEEE Trans. Inform. Theory, 25(1):1–7,
1979. doi:10.1109/TIT.1979.1055985.

[LY20] Andrea Lincoln and Adam Yedidia. Faster random k-CNF satisfiability. In 47th International
Colloquium on Automata, Languages, and Programming, volume 168 of LIPIcs. Leibniz Int.
Proc. Inform., pages Art. No. 78, 12. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2020.

[MMZ06] Stephan Mertens, Marc Mézard, and Riccardo Zecchina. Threshold values of random K-SAT
from the cavity method. Random Structures Algorithms, 28(3):340–373, 2006. doi:10.1002/

rsa.20090.

[MOO10] Elchanan Mossel, Ryan O’Donnell, and Krzysztof Oleszkiewicz. Noise stability of functions
with low influences: invariance and optimality. Ann. of Math. (2), 171(1):295–341, 2010. doi:

10.4007/annals.2010.171.295.

[Mos10] Elchanan Mossel. Gaussian bounds for noise correlation of functions. Geom. Funct. Anal.,
19(6):1713–1756, 2010. doi:10.1007/s00039-010-0047-x.

[MPZ02] M. Mézard, G. Parisi, and R. Zecchina. Analytic and algorithmic solution of random satisfiabil-
ity problems. Science, 297(5582):812–815, 2002. URL: https://www.science.org/doi/abs/
10.1126/science.1073287, arXiv:https://www.science.org/doi/pdf/10.1126/science.

1073287, doi:10.1126/science.1073287.

[MR99] Sanjeev Mahajan and H. Ramesh. Derandomizing approximation algorithms based on
semidefinite programming. SIAM J. Comput., 28(5):1641–1663, 1999. doi:10.1137/

S0097539796309326.

[MS11] Robin A. Moser and Dominik Scheder. A full derandomization of Schöning’s k-SAT algorithm. In
STOC’11—Proceedings of the 43rd ACM Symposium on Theory of Computing, pages 245–251.
ACM, New York, 2011. doi:10.1145/1993636.1993670.

[MSS99] João P. Marques-Silva and Karem A. Sakallah. GRASP: a search algorithm for propositional
satisfiability. IEEE Trans. Comput., 48(5):506–521, 1999. doi:10.1109/12.769433.

[MTz14] Sebastian Müller and Iddo Tzameret. Short propositional refutations for dense random 3CNF
formulas. Ann. Pure Appl. Logic, 165(12):1864–1918, 2014. doi:10.1016/j.apal.2014.08.001.

[MVV87] Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as easy as matrix
inversion. Combinatorica, 7(1):105–113, 1987. doi:10.1007/BF02579206.

[O’D14] Ryan O’Donnell. Analysis of Boolean functions. Cambridge University Press, New York, 2014.
doi:10.1017/CBO9781139814782.

[OW08] Ryan O’Donnell and Yi Wu. An optimal SDP algorithm for max-cut, and equally optimal
long code tests. In STOC’08, pages 335–344. ACM, New York, 2008. doi:10.1145/1374376.

1374425.

[PD11] Knot Pipatsrisawat and Adnan Darwiche. On the power of clause-learning SAT solvers as
resolution engines. Artificial Intelligence, 175(2):512–525, 2011. doi:10.1016/j.artint.2010.
10.002.

68

https://doi.org/10.1002/malq.19670130104
https://doi.org/10.1145/321864.321877
https://doi.org/10.1109/TIT.1979.1055985
https://doi.org/10.1002/rsa.20090
https://doi.org/10.1002/rsa.20090
https://doi.org/10.4007/annals.2010.171.295
https://doi.org/10.4007/annals.2010.171.295
https://doi.org/10.1007/s00039-010-0047-x
https://www.science.org/doi/abs/10.1126/science.1073287
https://www.science.org/doi/abs/10.1126/science.1073287
http://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.1073287
http://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.1073287
https://doi.org/10.1126/science.1073287
https://doi.org/10.1137/S0097539796309326
https://doi.org/10.1137/S0097539796309326
https://doi.org/10.1145/1993636.1993670
https://doi.org/10.1109/12.769433
https://doi.org/10.1016/j.apal.2014.08.001
https://doi.org/10.1007/BF02579206
https://doi.org/10.1017/CBO9781139814782
https://doi.org/10.1145/1374376.1374425
https://doi.org/10.1145/1374376.1374425
https://doi.org/10.1016/j.artint.2010.10.002
https://doi.org/10.1016/j.artint.2010.10.002

[Pos41] Emil L. Post. The Two-Valued Iterative Systems of Mathematical Logic. Annals of Mathematics
Studies, No. 5. Princeton University Press, Princeton, N. J., 1941.

[PPSZ05] Ramamohan Paturi, Pavel Pudlák, Michael E. Saks, and Francis Zane. An improved exponential-
time algorithm for k-SAT. J. ACM, 52(3):337–364, 2005. doi:10.1145/1066100.1066101.

[PPZ99] Ramamohan Paturi, Pavel Pudlák, and Francis Zane. Satisfiability coding lemma. Chicago J.
Theoret. Comput. Sci., pages Article 11, 19, 1999.

[Rag08] Prasad Raghavendra. Optimal algorithms and inapproximability results for every CSP? [ex-
tended abstract]. In STOC’08, pages 245–254. ACM, New York, 2008. doi:10.1145/1374376.
1374414.

[Rao11] Anup Rao. Parallel repetition in projection games and a concentration bound. SIAM J. Comput.,
40(6):1871–1891, 2011. doi:10.1137/080734042.

[Raz87] A. A. Razborov. Lower bounds on the dimension of schemes of bounded depth in a complete
basis containing the logical addition function. Mat. Zametki, 41(4):598–607, 623, 1987.

[Raz98] Ran Raz. A parallel repetition theorem. SIAM J. Comput., 27(3):763–803, 1998. doi:10.1137/
S0097539795280895.

[Sch78] Thomas J. Schaefer. The complexity of satisfiability problems. In Conference Record of the Tenth
Annual ACM Symposium on Theory of Computing (San Diego, Calif., 1978), pages 216–226.
ACM, New York, 1978.

[Sch79] Alexander Schrijver. A comparison of the Delsarte and Lovász bounds. IEEE Trans. Inform.
Theory, 25(4):425–429, 1979. doi:10.1109/TIT.1979.1056072.

[Sch02] U. Schöning. A probabilistic algorithm for k-SAT based on limited local search and restart.
Algorithmica, 32(4):615–623, 2002. doi:10.1007/s00453-001-0094-7.

[Sch21] Dominik Scheder. PPSZ is better than you think. In 62nd Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS 2021). 2021.

[Smo87] R. Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit complexity.
In Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, STOC ’87,
page 77–82, New York, NY, USA, 1987. Association for Computing Machinery. doi:10.1145/

28395.28404.

[STs74] V. N. Sudakov and B. S. Tsirel′son. Extremal properties of half-spaces for spherically invariant
measures. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 41:14–24, 165, 1974.
Problems in the theory of probability distributions, II.

[Ta-15] Noam Ta-Shma. A simple proof of the isolation lemma. Electron. Colloquium Comput. Complex.,
page 80, 2015. URL: https://eccc.weizmann.ac.il/report/2015/080.

[Tsei68] G. S. Tseitin. The complexity of a deduction in the propositional predicate calculus. Zap. Naučn.
Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 8:234–259, 1968.

[VV86] L. G. Valiant and V. V. Vazirani. NP is as easy as detecting unique solutions. Theoret. Comput.
Sci., 47(1):85–93, 1986. doi:10.1016/0304-3975(86)90135-0.

[VW19] Nikhil Vyas and Ryan Williams. On super strong ETH. In Theory and applications of sat-
isfiability testing—SAT 2019, volume 11628 of Lecture Notes in Comput. Sci., pages 406–
423. Springer, Cham, 2019. URL: https://doi.org/10.1007/978-3-030-24258-9_28, doi:
10.1007/978-3-030-24258-9_28.

69

https://doi.org/10.1145/1066100.1066101
https://doi.org/10.1145/1374376.1374414
https://doi.org/10.1145/1374376.1374414
https://doi.org/10.1137/080734042
https://doi.org/10.1137/S0097539795280895
https://doi.org/10.1137/S0097539795280895
https://doi.org/10.1109/TIT.1979.1056072
https://doi.org/10.1007/s00453-001-0094-7
https://doi.org/10.1145/28395.28404
https://doi.org/10.1145/28395.28404
https://eccc.weizmann.ac.il/report/2015/080
https://doi.org/10.1016/0304-3975(86)90135-0
https://doi.org/10.1007/978-3-030-24258-9_28
https://doi.org/10.1007/978-3-030-24258-9_28
https://doi.org/10.1007/978-3-030-24258-9_28

[Zhu20] Dmitriy Zhuk. A proof of the CSP dichotomy conjecture. J. ACM, 67(5):Art. 30, 78, 2020.
doi:10.1145/3402029.

70

https://doi.org/10.1145/3402029

	Introduction
	What are CSPs?
	Some questions
	Plan of this course
	Technical snippets

	Schaefer's theorem
	Gadget reductions
	Arc consistency
	Extending partial solutions
	Polymorphisms and invariants
	Galois connection
	Schaefer's theorem
	Alternative statement

	Approximability: MAX-3LIN
	Approximation algorithms and inapproximability
	PCP theorem, label cover, parallel repetition
	Long code, linearity testing (1)
	Fourier analysis and linearity testing (2)
	Dictatorship testing and folding
	Hardness for MAX-3LIN
	Variant

	Approximability: MAX-CUT
	Goemans–Williamson algorithm for MAX-CUT
	Algorithmic gap
	Integrality gap
	Hardness of approximation, and the unique games conjecture
	Extensions: O'Donnell–Wu and Raghavendra's theorem

	Proof complexity
	SAT solving and Resolution
	DPLL and Horn SAT
	2SAT and width
	Tseitin contradictions
	Size and width
	Random kSAT
	Certifying unsatisfiability

	Exponential time algorithms for kSAT
	Schöning's algorithm
	PPZ

	Isolation lemma and approximate counting/sampling
	Unique-SAT and the isolation lemma
	Approximate counting and sampling

