Assignment 2

Technion 236646

Yuval Filmus

August 10, 2022

An instance of $M A X-3 X O R$ consists of constraints C_{i} of the form $x_{i} \oplus x_{j} \oplus x_{k}=b$. Each constraint is accompanied by a rational positive weight w_{i}. The value of the instance is

$$
\max _{x} \frac{w(x)}{\sum_{i} w_{i}},
$$

where x goes over all truth assignments, and $w(x)$ is the total weight of constraints satisfied by x.

Unweighted MAX-3XOR is the special case in which $w_{i}=1$ for all i.
Tripartite $M A X-3 X O R$ is the special case in which the variables are partitioned into three parts, and each constraint involves exactly one variable from each part.

In class we showed that for every constant $\epsilon>0$, it is NP-hard to distinguish instances of MAX-3XOR whose value is at least $1-\epsilon$ from those whose value is at most $1 / 2+\epsilon$.

Question 1 Prove that for every constant $\epsilon>0$, it is NP-hard to distinguish instances of unweighted MAX-3XOR whose value is at least $1-\epsilon$ from those whose value is at most $1 / 2+\epsilon$.

Answer For every constant $\epsilon>0$ we will give a polynomial time reduction ϕ_{ϵ} from MAX-3XOR to unweighted MAX-3XOR such that

$$
\left|\operatorname{val}(I)-\operatorname{val}\left(\phi_{\epsilon}(I)\right)\right| \leq \epsilon .
$$

Assuming this, given constant $\epsilon>0$, we have shown in class that it is NP-hard to distinguish instances of MAX-3XOR whose value is at least $1-\epsilon / 2$ from those whose value is at most $1 / 2+\epsilon / 2$. It remains to compose the corresponding reduction with $\phi_{\epsilon / 2}$.

Let us now construct ϕ_{ϵ}. Suppose that we are given an instance I consisting of m constraints C_{1}, \ldots, C_{m} with weights w_{1}, \ldots, w_{m}. We can normalize the weights so that $\sum_{i=1}^{m} w_{i}=1$. Let $N=\lceil m / \epsilon\rceil$. We let $\phi_{\epsilon}(I)$ consist of each constraint C_{i} repeated $W_{i} \in$ $\left\{\left\lfloor N w_{i}\right\rfloor,\left\lceil N w_{i}\right\rceil\right\}$ times, where the floors and ceilings are chosen so that $\sum_{i=1}^{m} W_{i}=N$ (this is possible since $\sum_{i=1}^{m}\left\lfloor N w_{i}\right\rfloor \leq N \leq \sum_{i=1}^{m}\left\lceil N w_{i}\right\rceil$). Since $\left|W_{i}-N w_{i}\right|<1$, we have $\left|w_{\phi_{\epsilon}(I)}(x)-N w_{I}(x)\right|<m$ for all x, and so $\left|\operatorname{val}\left(\phi_{\epsilon}(I)\right)-\operatorname{val}(I)\right|<m / N \leq \epsilon$.

Question 2 Prove that for every constant $\epsilon>0$, it is NP-hard to distinguish instances of tripartite MAX-3XOR whose value is at least $1-\epsilon$ from those whose value is at most $1 / 2+\epsilon$.

Answer We closely follow the proof in Section 3.6 of the lecture notes.
Given an instance $\Pi=\left(U, V, E,\left\{\pi_{e}\right\}\right)$ of (Σ, Δ)-Label Cover, we construct a MAX3XOR instance with the following variables: for each $u \in U$, we have variables encoding an arbitrary function $f_{u}^{\prime}:\{ \pm 1\}^{\Sigma} \rightarrow\{ \pm 1\}$ and an odd function $f_{u}^{\prime \prime}:\{ \pm 1\}^{\Sigma} \rightarrow\{ \pm 1\}$, and for each $v \in V$, we have variables encoding an odd function $f_{v}:\{ \pm 1\}^{\Delta} \rightarrow\{ \pm 1\}$. We generate the constraints by sampling u, v, x, y, z as in Section 3.6, and checking whether

$$
f_{u}^{\prime}(x) f_{v}(y) f_{u}^{\prime \prime}\left(x\left(y \circ \pi_{u v}\right) z\right)=1 .
$$

Note that this is indeed a tripartite constraint.
The definition of a good edge stays the same. If an edge (u, v) is good then the same argument that derives (1) in Section 3.6 implies the following inequality:

$$
\sum_{S \subseteq[\Sigma]}(1-2 \delta)^{|S|} \hat{f}_{u}^{\prime}(S) \hat{f}_{u}^{\prime \prime}(S) \hat{f}_{v}\left(\pi_{u v}^{2}(S)\right) \geq \epsilon
$$

Applying the Cauchy-Schwarz inequality, this implies that

$$
\begin{aligned}
\epsilon & \leq \sqrt{\sum_{S} \hat{f}_{u}^{\prime}(S)^{2}} \sqrt{\sum_{S}|S|(1-2 \delta)^{2|S|} \mid \hat{f}_{u}^{\prime \prime}(S)^{2} \hat{f}_{v}\left(\pi_{u v}^{2}(S)\right)} \\
& \leq \sqrt{\sum_{S}|S|(1-2 \delta)^{2|S|} \hat{f}_{u}^{\prime \prime}(S)^{2} \hat{f}_{v}\left(\pi_{u v}^{2}(S)\right)} .
\end{aligned}
$$

For every $u \in U$, we choose $c(u)$ as follows: choose S from the spectral sample of $f_{u}^{\prime \prime}$, and then choose a random element $c(u) \in S$ (note that S is non-empty since $f_{u}^{\prime \prime}$ is odd). We color elements of V analogously using f_{v}. As in Section 3.6, the probability that $\pi_{u v}(c(u))=c(v)$ is at least

$$
\sum_{S} \frac{1}{|S|} \hat{f}_{u}^{\prime \prime}(S)^{2} \hat{f}_{v}\left(\phi_{u v}^{2}(S)\right)^{2}
$$

The rest of the argument in Section 3.6 goes through, replacing f_{u} with $f_{u}^{\prime \prime}$.

Question 3 Moshkovitz and Raz ${ }^{1}$ proved that for every $\gamma \geq \frac{1}{n^{O(1)}},{ }^{2}$ it is NP-hard to distinguish satisfiable instances of (Σ, Δ)-Label Cover from instances whose value is at most γ, where $|\Sigma| \leq 2^{(1 / \gamma)^{O(1)}}$ and $|\Delta| \leq(1 / \gamma)^{O(1)} .{ }^{3}$

Prove that for some function $\epsilon(n)=o(1)$, it is NP-hard to distinguish instances of MAX-3XOR on n variables whose value is at least $1-\epsilon$ from those whose value is at most $1 / 2+\epsilon$.

Answer We closely follow the argument in Section 3.6 of the lecture notes.
Let us summarize the main points of the construction:

- Given a parameter δ and an instance Π of (Σ, Δ)-Label Cover on N vertices, where $|\Sigma|,|\Delta| \leq M$, we construct an instance Ψ of MAX-3LIN with $n \leq 2^{M} N$ variables. The construction is polynomial as long as 2^{M} is polynomial in N.
- If Π is satisfiable then Ψ has value at least $1-\delta$, which needs to be at least $1-\epsilon$.
- If Ψ has value more than $1 / 2+\epsilon$ then Π has value at least $2 e \delta \epsilon^{3}$, which needs to exceed γ.

It suffices to require $\delta \leq \epsilon$ and $\delta \epsilon^{3} \geq \gamma$, that is,

$$
\frac{\gamma}{\epsilon^{3}} \leq \delta \leq \epsilon .
$$

Such a choice is possible as long as $\epsilon \geq \gamma^{1 / 4}$.
Since $M=2^{(1 / \gamma)^{O(1)}}$ and 2^{M} needs to be polynomial in N, we need to choose $\gamma=$ $1 /(\log \log N)^{\Omega(1)}=1 /(\log \log n)^{\Omega(1)}$. This means that we can choose

$$
\epsilon=\frac{1}{(\log \log n)^{\Omega(1)}} .
$$

Moshkovitz and Raz conjecture that the size of the alphabet Σ can be reduced to $(1 / \gamma)^{O(1)}$, in which case we would be able to choose $\epsilon=\frac{1}{(\log n)^{\Omega(1)}}$. The linear Projection Games Conjecture would improve this to $\epsilon=\frac{1}{n^{\Omega(1)}}$.

[^0]
[^0]: ${ }^{1}$ Dana Moshkovitz and Raz Raz, Two-query PCP with subconstant error, Journal of the ACM, vol. $57(5), 2010$, pp. 1-29 (with a 100 page appendix).
 ${ }^{2}$ That is, γ needs to satisfy $\gamma \geq 1 / n^{C}$ for some constant $C>0$ of our choice.
 ${ }^{3}$ In contrast, applying parallel repetition to the PCP theorem, we obtain that for every constant $\gamma>0$, it is NP-hard to distinguish satisfiable instances of (Σ, Δ)-Label Cover from instances whose value is at most γ, where $|\Sigma|,|\Delta| \leq(1 / \gamma)^{O(1)}$. We can only take γ to be constant since parallel repetition blows up an instance of size n to one of size $n^{\Theta(\log (1 / \gamma))}$. In contrast, the Moshkovitz-Raz construction blows up the instance to one of size $n^{1+o(1)}(1 / \gamma)^{O(1)}$.

