Assignment 1

Technion 236646

Yuval Filmus

April 19, 2022

For the sake of this assignment, assume that $P \neq NP$.

Question 1 Suppose that Γ is an infinite set of predicates whose only polymorphisms are projections and (possibly) anti-projections.

- (a) Show that Γ has a finite subset with this property.
- (b) Bonus: Define a version of $CSP(\Gamma)$ which makes sense for (some) infinite Γ , and prove a dichotomy theorem for it.

Question 2 For $0 \le i \le n$, let $\alpha_{n,i}$ be the following *n*-ary predicate:

 $\alpha_{n,i} = \{(x_1, \dots, x_n) \in \{0, 1\}^n : x_1 + \dots + x_n = i\}.$

- (a) Let $A = \{\alpha_{n,i} : n \in \mathbb{N}, 0 \le i \le n\}$. Determine for which finite sets $\Gamma \subseteq A$ the problem $\text{CSP}(\Gamma)$ is in P, and for which the problem $\text{CSP}(\Gamma)$ is NP-complete.
- (b) Now suppose that $\Gamma \subseteq A$ is infinite. We extend the definition of $\text{CSP}(\Gamma)$ to infinite Γ in the natural way: a constraint $\alpha_{n,i}(x_{i_1}, \ldots, x_{i_n})$ is encoded as a tuple (n, i, i_1, \ldots, i_n) , and an instance is a Yes instance if there is a satisfying assignment; we are promised that all constraints in the input instance belong to Γ .

Show that $CSP(\Gamma)$ is either NP-complete or in P.

Question 3 Suppose that Γ is a finite set of predicates which is closed under negating individual inputs: if $R \in \Gamma$ is a k-ary predicate, then for each $i \in \{1, \ldots, k\}$, the predicate $R^{(i)}(x_1, \ldots, x_k) = R(x_1, \ldots, x_{i-1}, \neg x_i, x_{i+1}, \ldots, x_k)$ is also in Γ . Examples of CSPs satisfying this condition include kSAT, kNAE-SAT, and kXOR-SAT.

- (a) Show that $\text{CSP}(\Gamma)$ is in P iff either ternary majority or ternary XOR is a polymorphism of Γ .
- (b) Show that there is no single polymorphism f such that $CSP(\Gamma)$ is in P iff f is a polymorphism of Γ .

Question 4 In this question, we consider predicates and polymorphisms over a finite alphabet Σ . A *unital* function is a function depending on a single coordinate.

Let Γ be a finite set of relations. Suppose that Γ has no constant polymorphisms, and that it has some non-unital polymorphism. Show that Γ has a non-unital polymorphism depending on at most $|\Sigma| + 1$ coordinates.